A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rat...A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.展开更多
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with...Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.展开更多
Because of the complex nature of the changes in the current and movement of the riverbeds by bridge scouring, it is impossible to understand or predict these changes. In order to have a reliable data, it is critical t...Because of the complex nature of the changes in the current and movement of the riverbeds by bridge scouring, it is impossible to understand or predict these changes. In order to have a reliable data, it is critical to have the current methods and equipment for measuring bridge scouring replaced with technology that could acquire real-time bridge scouring data. Despite the critical need for real-time data acquisition, the harsh environmental conditions have prevented the scientific community from acquiring real-time data. Harsh environmental conditions were addressed by the developmental of an automated, remote data collection system, allowing real-time data such as scour movement, scour depth, and scour trend to be viewed in a safe location. As a result, accurate sea-floor movements were seen for the first time, aiding the direction and future of bridge scour research, ultimately contributing greatly to the safety of bridges.展开更多
现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号...现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。展开更多
基金Meg-science Program of the Chinese Academy of Sciences (No. 19981303)
文摘A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.
基金supported by the National Natural Science Foundation (71301119)the Shanghai Natural Science Foundation (12ZR1434100)
文摘Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.
文摘Because of the complex nature of the changes in the current and movement of the riverbeds by bridge scouring, it is impossible to understand or predict these changes. In order to have a reliable data, it is critical to have the current methods and equipment for measuring bridge scouring replaced with technology that could acquire real-time bridge scouring data. Despite the critical need for real-time data acquisition, the harsh environmental conditions have prevented the scientific community from acquiring real-time data. Harsh environmental conditions were addressed by the developmental of an automated, remote data collection system, allowing real-time data such as scour movement, scour depth, and scour trend to be viewed in a safe location. As a result, accurate sea-floor movements were seen for the first time, aiding the direction and future of bridge scour research, ultimately contributing greatly to the safety of bridges.
文摘现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。