The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are sum...The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are summarized. The identification and reconstruction of real time traffic data are analyzed using Kalman filter equation and statistical approach. Four methods for ITS (Intelligent transportation system) detector data screening in traffic management systems are discussed in detail. Meanwhile traffic data examinations are discussed with solutions formulated through analysis, and recommendations are made for information collection and data management in future.展开更多
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with...Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.展开更多
AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasou...AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasound image in real time by merging the ultrasound image with a multiplanar reconstruction computed tomography(CT)image,using pre-scanned CT volume data.The ultrasound used was EUB-8500with a convex probe EUP-C514.The RVS images were evaluated based on 3 levels,namely,excellent,good and poor,by the displacement in position.RESULTS:By combining the objectivity of CT with free scanning using RVS,it was possible to easily interpret the relationship between lesions and the surrounding organs as well as the position of vascular structures.The resulting evaluation levels of the RVS images were12 excellent(pancreatic cancer,bile duct cancer,cholecystolithiasis and cholangiocellular carcinoma)and 3 good(pancreatic cancer and gallbladder cancer).Compared with conventional B-mode ultrasonography and CT,RVS images achieved a rate of 80%superior visualization and 20%better visualization.CONCLUSION:RVS has potential usefulness in objective visualization and diagnosis in the field of biliary and pancreatic diseases.展开更多
In this paper we present a novel featurebased RGB-D camera pose optimization algorithm for real-time 3D reconstruction systems. During camera pose estimation, current methods in online systems suffer from fast-scanned...In this paper we present a novel featurebased RGB-D camera pose optimization algorithm for real-time 3D reconstruction systems. During camera pose estimation, current methods in online systems suffer from fast-scanned RGB-D data, or generate inaccurate relative transformations between consecutive frames. Our approach improves current methods by utilizing matched features across all frames and is robust for RGB-D data with large shifts in consecutive frames. We directly estimate camera pose for each frame by efficiently solving a quadratic minimization problem to maximize the consistency of3 D points in global space across frames corresponding to matched feature points. We have implemented our method within two state-of-the-art online 3D reconstruction platforms. Experimental results testify that our method is efficient and reliable in estimating camera poses for RGB-D data with large shifts.展开更多
文摘The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are summarized. The identification and reconstruction of real time traffic data are analyzed using Kalman filter equation and statistical approach. Four methods for ITS (Intelligent transportation system) detector data screening in traffic management systems are discussed in detail. Meanwhile traffic data examinations are discussed with solutions formulated through analysis, and recommendations are made for information collection and data management in future.
基金supported by the National Natural Science Foundation (71301119)the Shanghai Natural Science Foundation (12ZR1434100)
文摘Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.
文摘AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasound image in real time by merging the ultrasound image with a multiplanar reconstruction computed tomography(CT)image,using pre-scanned CT volume data.The ultrasound used was EUB-8500with a convex probe EUP-C514.The RVS images were evaluated based on 3 levels,namely,excellent,good and poor,by the displacement in position.RESULTS:By combining the objectivity of CT with free scanning using RVS,it was possible to easily interpret the relationship between lesions and the surrounding organs as well as the position of vascular structures.The resulting evaluation levels of the RVS images were12 excellent(pancreatic cancer,bile duct cancer,cholecystolithiasis and cholangiocellular carcinoma)and 3 good(pancreatic cancer and gallbladder cancer).Compared with conventional B-mode ultrasonography and CT,RVS images achieved a rate of 80%superior visualization and 20%better visualization.CONCLUSION:RVS has potential usefulness in objective visualization and diagnosis in the field of biliary and pancreatic diseases.
文摘In this paper we present a novel featurebased RGB-D camera pose optimization algorithm for real-time 3D reconstruction systems. During camera pose estimation, current methods in online systems suffer from fast-scanned RGB-D data, or generate inaccurate relative transformations between consecutive frames. Our approach improves current methods by utilizing matched features across all frames and is robust for RGB-D data with large shifts in consecutive frames. We directly estimate camera pose for each frame by efficiently solving a quadratic minimization problem to maximize the consistency of3 D points in global space across frames corresponding to matched feature points. We have implemented our method within two state-of-the-art online 3D reconstruction platforms. Experimental results testify that our method is efficient and reliable in estimating camera poses for RGB-D data with large shifts.