An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, hea...An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, heat conduction, and energy dissipation at the contact interface. A laser sheet illuminates the contact interface, and the transmitted laser sheet is projected onto a screen. Then the contact information is acquired from the screen by a camera. An improved Otsu method is proposed to process the data of experimental images. It can compute the threshold of the overall image and filter out all the pixels one by one. Through analyzing the experimental results, we describe the relationship between the real contact area and the positive pressure during a continuous loading process, at different loading rates, with the polymethyl methacrylate(PMMA)material. A hysteresis phenomenon in the relationship between the real contact area and the positive pressure is found and explained.展开更多
The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To i...The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper.With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu's method is used for measurement. Through an experimental study performed on polymethyl methacrylate(PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge.展开更多
A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed r...A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.展开更多
The effects of surface roughness, strain rate, friction coefficient and pressure on real contact area were analyzed based on the research of Stupkiewicz. The real contact area model taking account of the effect of fri...The effects of surface roughness, strain rate, friction coefficient and pressure on real contact area were analyzed based on the research of Stupkiewicz. The real contact area model taking account of the effect of friction and deformation of material was obtained. The model of contact conductance at the rolling interface was obtained by integrating the specific feature of heat transfer through the interface of continuous roll-casting. The results indicate that the real contact area increases obviously when the material is under yield, and the real contact area varies inversely with surface roughness, whereas it varies exponentially with friction coefficient, strain rate and pressure, and the power factor depends on strain rate.展开更多
Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear.In sheet metal forming processes,sheet surface asperities are deformed due to contact forces between the tools and th...Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear.In sheet metal forming processes,sheet surface asperities are deformed due to contact forces between the tools and the workpiece.In addition,as the sheet metal is strained while retaining the normal load,the asperity deformation increases significantly.Deformation of the asperities determines the real area of contact which influences the friction and wear at the tool-sheet metal contact.The real area of contact between two contacting rough surfaces depends on type of loading,material behavior,and topography of the contacting surfaces.In this study,an experimental setup is developed to investigate the effect of a combined normal load and sub-surface strain on real area of contact.Uncoated and zinc coated steel sheets(GI)with different coating thicknesses,surface topographies,and substrate materials are used in the experimental study.Finite element(FE)analyses are performed on measured surface profiles to further analyze the behavior observed in the experiments and to understand the effect of surface topography,and coating thickness on the evolution of the real area of contact.Finally,an analytical model is presented to determine the real area contact under combined normal load and sub-surface strain.The results show that accounting for combined normal load and sub-surface straining effects is necessary for accurate predictions of the real area of contact.展开更多
The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.How...The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.However,with the development of measuring instruments and methods,some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions,such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area.At present,there is no unified conclusion on the explanation of this phenomenon.We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism.An image processing method is proposed,which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon.The weighted superposition method is used to identify micro contact spots,to calculate the real contact area,and the color superimposed image is used to identify micro contact behaviors.Based on this method,the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed.Furthermore,the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally.It is found that the effects of fluid between contact interface,normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface.展开更多
The real contact area(RCA)of randomly rough contacts has received a great deal of attention because it correlates strongly with friction,lubrication,sealing,and conductivity.Simulations have revealed that the RCA asso...The real contact area(RCA)of randomly rough contacts has received a great deal of attention because it correlates strongly with friction,lubrication,sealing,and conductivity.Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied,in a phenomenon called junction growth.However,experimental investigations of the junction growth of randomly rough contacts are rare.Here,we used X-ray computed tomography(CT)to measure junction growth when two aluminum alloy surfaces were in contact.A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4μm.The RCA and average contact gaps were computed using a three-dimensional(3D)geometric model constructed from gray CT images using the Otsu thresholding method.The results showed that the RCA increased as the normal load increased.The RCA increased by 22.67%after a tangential load was applied(junction growth),and the average gap decreased by 14.01%after a tangential load was applied.Thus,X-ray CT accurately measured the junction growth as a novel quantitative method.展开更多
The elastic loading behaviour of rough surfaces is derived based on the physical understanding of the contact phenomena, where the pressure distribution is analytically obtained without any negative values or converge...The elastic loading behaviour of rough surfaces is derived based on the physical understanding of the contact phenomena, where the pressure distribution is analytically obtained without any negative values or convergence problems, thus the evolution of the contact behaviour is obtained in a semi-analytical manner. Numerical results obtained by the proposed approach facilitate the understanding of the contact behaviour in the following aspects: 1) the ratio of contact area to load decreases with an increase in real contact area;2) normal approach-load relationship is approximated by an exponential decay under relatively small loads and a linear decay under relatively large loads;and 3) average gap shows an exponential relationship with load only in moderate load range.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11272171)the Beijing Natural Science Foundation,China(Grant No.3132030)the Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, heat conduction, and energy dissipation at the contact interface. A laser sheet illuminates the contact interface, and the transmitted laser sheet is projected onto a screen. Then the contact information is acquired from the screen by a camera. An improved Otsu method is proposed to process the data of experimental images. It can compute the threshold of the overall image and filter out all the pixels one by one. Through analyzing the experimental results, we describe the relationship between the real contact area and the positive pressure during a continuous loading process, at different loading rates, with the polymethyl methacrylate(PMMA)material. A hysteresis phenomenon in the relationship between the real contact area and the positive pressure is found and explained.
基金Project supported by the National Natural Science Foundation of China(Grant No.11272171)the Natural Science Foundation of Beijing City,China(Contract No.3172017)the Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper.With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu's method is used for measurement. Through an experimental study performed on polymethyl methacrylate(PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge.
基金Project(2012BAF09B04)supported by the National Key Technology Research and Development Program of China
文摘A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.
基金Project(1999064906) supported by the National Key Fundamental Research and Development of China
文摘The effects of surface roughness, strain rate, friction coefficient and pressure on real contact area were analyzed based on the research of Stupkiewicz. The real contact area model taking account of the effect of friction and deformation of material was obtained. The model of contact conductance at the rolling interface was obtained by integrating the specific feature of heat transfer through the interface of continuous roll-casting. The results indicate that the real contact area increases obviously when the material is under yield, and the real contact area varies inversely with surface roughness, whereas it varies exponentially with friction coefficient, strain rate and pressure, and the power factor depends on strain rate.
文摘Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear.In sheet metal forming processes,sheet surface asperities are deformed due to contact forces between the tools and the workpiece.In addition,as the sheet metal is strained while retaining the normal load,the asperity deformation increases significantly.Deformation of the asperities determines the real area of contact which influences the friction and wear at the tool-sheet metal contact.The real area of contact between two contacting rough surfaces depends on type of loading,material behavior,and topography of the contacting surfaces.In this study,an experimental setup is developed to investigate the effect of a combined normal load and sub-surface strain on real area of contact.Uncoated and zinc coated steel sheets(GI)with different coating thicknesses,surface topographies,and substrate materials are used in the experimental study.Finite element(FE)analyses are performed on measured surface profiles to further analyze the behavior observed in the experiments and to understand the effect of surface topography,and coating thickness on the evolution of the real area of contact.Finally,an analytical model is presented to determine the real area contact under combined normal load and sub-surface strain.The results show that accounting for combined normal load and sub-surface straining effects is necessary for accurate predictions of the real area of contact.
基金the National Natural Science Foundation of China(Grant No.11872033)the Beijing Natural Science Foundation,China(Grant No.3172017).
文摘The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.However,with the development of measuring instruments and methods,some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions,such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area.At present,there is no unified conclusion on the explanation of this phenomenon.We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism.An image processing method is proposed,which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon.The weighted superposition method is used to identify micro contact spots,to calculate the real contact area,and the color superimposed image is used to identify micro contact behaviors.Based on this method,the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed.Furthermore,the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally.It is found that the effects of fluid between contact interface,normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface.
基金supported by the National Natural Science Foundation of China(Nos.U2141217 and 51935003)。
文摘The real contact area(RCA)of randomly rough contacts has received a great deal of attention because it correlates strongly with friction,lubrication,sealing,and conductivity.Simulations have revealed that the RCA associated with deterministic normal squeezing loads increases when tangential loads are also applied,in a phenomenon called junction growth.However,experimental investigations of the junction growth of randomly rough contacts are rare.Here,we used X-ray computed tomography(CT)to measure junction growth when two aluminum alloy surfaces were in contact.A high-resolution experimental setup was used to apply loads and observe contact behaviors at a resolution of 4μm.The RCA and average contact gaps were computed using a three-dimensional(3D)geometric model constructed from gray CT images using the Otsu thresholding method.The results showed that the RCA increased as the normal load increased.The RCA increased by 22.67%after a tangential load was applied(junction growth),and the average gap decreased by 14.01%after a tangential load was applied.Thus,X-ray CT accurately measured the junction growth as a novel quantitative method.
基金The authors acknowledge the financial supports by the National Key Research and Development Program of China(2016YFF0204305)the National Natural Science Foundation of China(51775460 and 51905456)the China Postdoctoral Science Foundation(2019M653836XB).
文摘The elastic loading behaviour of rough surfaces is derived based on the physical understanding of the contact phenomena, where the pressure distribution is analytically obtained without any negative values or convergence problems, thus the evolution of the contact behaviour is obtained in a semi-analytical manner. Numerical results obtained by the proposed approach facilitate the understanding of the contact behaviour in the following aspects: 1) the ratio of contact area to load decreases with an increase in real contact area;2) normal approach-load relationship is approximated by an exponential decay under relatively small loads and a linear decay under relatively large loads;and 3) average gap shows an exponential relationship with load only in moderate load range.