In this paper,we present a novel collision detection algorithm to real time detect the collisions of objects.We gen- erate sphere textures of objects,and use programmable graphics hardware to mapping texture and check...In this paper,we present a novel collision detection algorithm to real time detect the collisions of objects.We gen- erate sphere textures of objects,and use programmable graphics hardware to mapping texture and check the depth of different ob- jects to detect the collision.We have implemented the algorithm and compared it with CULLIDE.The result shows that our algo- rithm is more effective than CULLIDE and has fixed executive time to suit for real-time applications.展开更多
Graphic processing units (GPUs) have been widely recognized as cost-efficient co-processors with acceptable size, weight, and power consumption. However, adopting GPUs in real-time systems is still challenging, due ...Graphic processing units (GPUs) have been widely recognized as cost-efficient co-processors with acceptable size, weight, and power consumption. However, adopting GPUs in real-time systems is still challenging, due to the lack in framework for real-time analysis. In order to guarantee real-time requirements while maintaining system utilization ~in modern heterogeneous systems, such as multicore multi-GPU systems, a novel suspension-based k-exclusion real-time locking protocol and the associated suspension-aware schedulability analysis are proposed. The proposed protocol provides a synchronization framework that enables multiple GPUs to be efficiently integrated in multicore real-time systems. Comparative evaluations show that the proposed methods improve upon the existing work in terms of schedulability.展开更多
具有噪声的基于密度的空间聚类(Density‑based spatial clustering of applications with noise,DBSCAN)能够发现不同密度和大小的类簇,对噪声也有很好的鲁棒性,被广泛地应用到数据挖掘的任务中。DBSCAN通常需要调整参数MinPts和Eps以...具有噪声的基于密度的空间聚类(Density‑based spatial clustering of applications with noise,DBSCAN)能够发现不同密度和大小的类簇,对噪声也有很好的鲁棒性,被广泛地应用到数据挖掘的任务中。DBSCAN通常需要调整参数MinPts和Eps以达到更优的聚类效果,但往往在搜索最优参数的过程中会影响DBSCAN的性能。本文从两个方面优化DBSCAN,一方面,提出一种无参的方法优化DBSCAN全局参数选择。无参方法利用自然最近邻获得数据集的自然特征值,并将自然特征值作为参数MinPts值。然后,根据自然特征值计算自然特征集合,利用自然特征集合中的数据分布特性,分别采取统计最小值、平均值和最大值3种方式得到Eps值。另一方面,采用集成数据科学实时加速平台(Real‑time acceleration platform for integrated data science,RAPIDS)的图形处理器(Graphics processing unit,GPU)计算加快DBSCAN算法的收敛速度。实验结果表明,本文提出的方法在优化DBSCAN参数选择的同时,取得了与密度峰值聚类(Density peaks clustering,DPC)相当的聚类结果。展开更多
文摘In this paper,we present a novel collision detection algorithm to real time detect the collisions of objects.We gen- erate sphere textures of objects,and use programmable graphics hardware to mapping texture and check the depth of different ob- jects to detect the collision.We have implemented the algorithm and compared it with CULLIDE.The result shows that our algo- rithm is more effective than CULLIDE and has fixed executive time to suit for real-time applications.
基金supported by the National Natural Science Foundation of China under Grant No.61003032/F020207
文摘Graphic processing units (GPUs) have been widely recognized as cost-efficient co-processors with acceptable size, weight, and power consumption. However, adopting GPUs in real-time systems is still challenging, due to the lack in framework for real-time analysis. In order to guarantee real-time requirements while maintaining system utilization ~in modern heterogeneous systems, such as multicore multi-GPU systems, a novel suspension-based k-exclusion real-time locking protocol and the associated suspension-aware schedulability analysis are proposed. The proposed protocol provides a synchronization framework that enables multiple GPUs to be efficiently integrated in multicore real-time systems. Comparative evaluations show that the proposed methods improve upon the existing work in terms of schedulability.
文摘具有噪声的基于密度的空间聚类(Density‑based spatial clustering of applications with noise,DBSCAN)能够发现不同密度和大小的类簇,对噪声也有很好的鲁棒性,被广泛地应用到数据挖掘的任务中。DBSCAN通常需要调整参数MinPts和Eps以达到更优的聚类效果,但往往在搜索最优参数的过程中会影响DBSCAN的性能。本文从两个方面优化DBSCAN,一方面,提出一种无参的方法优化DBSCAN全局参数选择。无参方法利用自然最近邻获得数据集的自然特征值,并将自然特征值作为参数MinPts值。然后,根据自然特征值计算自然特征集合,利用自然特征集合中的数据分布特性,分别采取统计最小值、平均值和最大值3种方式得到Eps值。另一方面,采用集成数据科学实时加速平台(Real‑time acceleration platform for integrated data science,RAPIDS)的图形处理器(Graphics processing unit,GPU)计算加快DBSCAN算法的收敛速度。实验结果表明,本文提出的方法在优化DBSCAN参数选择的同时,取得了与密度峰值聚类(Density peaks clustering,DPC)相当的聚类结果。