In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation p...In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary fea- ture of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles.展开更多
The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or la...The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coef- ficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coef- ficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode sur- face. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time andresist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.展开更多
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
为比较分析城市道路观测环境下BDS-3/GPS组合RTK测量性能,探讨一种基于卡尔曼滤波算法的RTK测量模型。在统一BDS-3/GPS组合RTK测量时空基准的基础上,建立RTK观测方程模型,利用LAMBDA算法快速确定双差整周模糊度,并基于卡尔曼滤波算法求...为比较分析城市道路观测环境下BDS-3/GPS组合RTK测量性能,探讨一种基于卡尔曼滤波算法的RTK测量模型。在统一BDS-3/GPS组合RTK测量时空基准的基础上,建立RTK观测方程模型,利用LAMBDA算法快速确定双差整周模糊度,并基于卡尔曼滤波算法求解RTK观测方程模型测量结果;基于Visual Studio 2020平台,运用C/C++编程语言,设计和开发RTK数据处理软件(KalRTK),并比较分析BDS-3/GPS组合RTK测量结果。通过城市道路实测数据分析结果表明,BDS-3系统沿东西向跟踪卫星能力要略弱于GPS系统;BDS-3/GPS组合RTK测量的平面精度与高程精度均优于1.6cm,点位精度优于2.2cm,与GPS双频RTK测量精度基本相当,但优于BDS-3双频RTK测量精度。展开更多
文摘In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers' comfort, etc., it is very common to generate road profles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary fea- ture of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.NS2015015)
文摘The accurate estimation of road friction coeffi- cient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coef- ficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coef- ficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode sur- face. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time andresist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
文摘为比较分析城市道路观测环境下BDS-3/GPS组合RTK测量性能,探讨一种基于卡尔曼滤波算法的RTK测量模型。在统一BDS-3/GPS组合RTK测量时空基准的基础上,建立RTK观测方程模型,利用LAMBDA算法快速确定双差整周模糊度,并基于卡尔曼滤波算法求解RTK观测方程模型测量结果;基于Visual Studio 2020平台,运用C/C++编程语言,设计和开发RTK数据处理软件(KalRTK),并比较分析BDS-3/GPS组合RTK测量结果。通过城市道路实测数据分析结果表明,BDS-3系统沿东西向跟踪卫星能力要略弱于GPS系统;BDS-3/GPS组合RTK测量的平面精度与高程精度均优于1.6cm,点位精度优于2.2cm,与GPS双频RTK测量精度基本相当,但优于BDS-3双频RTK测量精度。