The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system,...The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system, assessment computer. and the assessment operating code system. InSRDAAR-QNPP, the wind field of the surface and the lower levels are determined hourly by using amass consistent three-dimension diasnosis model with the topographic following coordinate system.A Lagrangin Puff model under changing meteorological condition is adopted for atmosphericdispersion, the correction for dry and wet depositions. physical decay and partial plume penetrationof the top inversion and the deviation of plume axis caused by complex terrain have been taken in-to account. The calculation domain areas include three square grid areas with the sideline 10 km, 40krn and 160 km and a grid interval 0.5 km, 2.0 km, 8.0 km respectively. Three exposure pathwaysare taken into account:the external exposure from immersion cloud and passing puff, the internalexposure from inhalation and the external exposure from contaminated ground. This system is ableto provide the results of concentration and dose distributions within 10 minutes after the data havebeen inputed.展开更多
This paper describes a multi-threat real-time separating system for broadband anti-radiation missile seeker. It presents a method, with a dual-port memory as comparer, to perform PF and PW hardware real-time separatio...This paper describes a multi-threat real-time separating system for broadband anti-radiation missile seeker. It presents a method, with a dual-port memory as comparer, to perform PF and PW hardware real-time separation and to determine the time-of-arrival (TOA) by use of sequential difference histogram (SDIF). The method has been applied to practice, which has achieved good results.展开更多
Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed ...Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.展开更多
Some specified chips in traditional Manchester-Ⅱencoding/decoding designs are used to guarantee strictly the stability of the input wave,otherwise the capacity of anti-interference and resilience are degraded serious...Some specified chips in traditional Manchester-Ⅱencoding/decoding designs are used to guarantee strictly the stability of the input wave,otherwise the capacity of anti-interference and resilience are degraded seriously.In this paper,a new Manchester-Ⅱencoding/ decoding system is used for nuclear logging by a 7 000 m armoring cable.A thorough hardware wave tracking decoding algorithm is proposed and realized in a FPGA hardware chip.An on-site measurements show that this transmission system can decode correctly in real time,with a bit error rate of better than 10^(-10).展开更多
文摘The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system, assessment computer. and the assessment operating code system. InSRDAAR-QNPP, the wind field of the surface and the lower levels are determined hourly by using amass consistent three-dimension diasnosis model with the topographic following coordinate system.A Lagrangin Puff model under changing meteorological condition is adopted for atmosphericdispersion, the correction for dry and wet depositions. physical decay and partial plume penetrationof the top inversion and the deviation of plume axis caused by complex terrain have been taken in-to account. The calculation domain areas include three square grid areas with the sideline 10 km, 40krn and 160 km and a grid interval 0.5 km, 2.0 km, 8.0 km respectively. Three exposure pathwaysare taken into account:the external exposure from immersion cloud and passing puff, the internalexposure from inhalation and the external exposure from contaminated ground. This system is ableto provide the results of concentration and dose distributions within 10 minutes after the data havebeen inputed.
文摘This paper describes a multi-threat real-time separating system for broadband anti-radiation missile seeker. It presents a method, with a dual-port memory as comparer, to perform PF and PW hardware real-time separation and to determine the time-of-arrival (TOA) by use of sequential difference histogram (SDIF). The method has been applied to practice, which has achieved good results.
基金supported by National Key Technology Research and Development Program of China under Grant No.2015BAH08F01the joint fund of the Ministry of Education of People's Republic of China and China Mobile Communications Corporation under Grant No.MCM20160304
文摘Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.
基金Supported by the China National High Technology Research and Development Program(863 Plans) funding for this project(No,2006AA09A102-02)
文摘Some specified chips in traditional Manchester-Ⅱencoding/decoding designs are used to guarantee strictly the stability of the input wave,otherwise the capacity of anti-interference and resilience are degraded seriously.In this paper,a new Manchester-Ⅱencoding/ decoding system is used for nuclear logging by a 7 000 m armoring cable.A thorough hardware wave tracking decoding algorithm is proposed and realized in a FPGA hardware chip.An on-site measurements show that this transmission system can decode correctly in real time,with a bit error rate of better than 10^(-10).