Real-time satellite orbit and clock corrections obtained from the broadcast ephemerides can be improved using IGS real-time service (RTS) products. Recent research showed that applying such corrections for broadcast e...Real-time satellite orbit and clock corrections obtained from the broadcast ephemerides can be improved using IGS real-time service (RTS) products. Recent research showed that applying such corrections for broadcast ephemerides can significantly improve the RMS of the estimated coordinates. However, unintentional streaming interruption may happen for many reasons such as software or hardware failure. Streaming interruption, if happened, will cause sudden degradation of the obtained solution if only the broadcast ephemerides are used. A better solution can be obtained in real-time if the predicted part of the ultra-rapid products is used. In this paper, Harmonic analysis technique is used to predict the IGS RTS corrections using historical broadcasted data. It is shown that using the predicted clock corrections improves the RMS of the estimated coordinates by about 72%, 58%, and 72% in latitude, longitude, and height directions, respectively and reduces the 2D and 3D errors by about 80% compared with the predicted part of the IGS ultra-rapid clock corrections.展开更多
Industrial timer requirements are multifaceted. On-delay, off-delay, cyclic or sequential timing requirements, with usual time range varying from seconds to days, depending on the process. Custom build timers cannot p...Industrial timer requirements are multifaceted. On-delay, off-delay, cyclic or sequential timing requirements, with usual time range varying from seconds to days, depending on the process. Custom build timers cannot provide all of these requirements simultaneously and hence an advanced timer rectifying this shortcoming has been designed and fabricated in this work. This timer is based on the real time clock chip used in mother boards. Our design can be programmed for a specific time requirement and can later be put to work in standalone mode. A demonstration board is fabricated and tested.展开更多
文摘Real-time satellite orbit and clock corrections obtained from the broadcast ephemerides can be improved using IGS real-time service (RTS) products. Recent research showed that applying such corrections for broadcast ephemerides can significantly improve the RMS of the estimated coordinates. However, unintentional streaming interruption may happen for many reasons such as software or hardware failure. Streaming interruption, if happened, will cause sudden degradation of the obtained solution if only the broadcast ephemerides are used. A better solution can be obtained in real-time if the predicted part of the ultra-rapid products is used. In this paper, Harmonic analysis technique is used to predict the IGS RTS corrections using historical broadcasted data. It is shown that using the predicted clock corrections improves the RMS of the estimated coordinates by about 72%, 58%, and 72% in latitude, longitude, and height directions, respectively and reduces the 2D and 3D errors by about 80% compared with the predicted part of the IGS ultra-rapid clock corrections.
文摘Industrial timer requirements are multifaceted. On-delay, off-delay, cyclic or sequential timing requirements, with usual time range varying from seconds to days, depending on the process. Custom build timers cannot provide all of these requirements simultaneously and hence an advanced timer rectifying this shortcoming has been designed and fabricated in this work. This timer is based on the real time clock chip used in mother boards. Our design can be programmed for a specific time requirement and can later be put to work in standalone mode. A demonstration board is fabricated and tested.