Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time....Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time.This work proposes an adap-tive learning algorithm-based framework,Twitter Sentiment Drift Analysis-Bidir-ectional Encoder Representations from Transformers(TSDA-BERT),which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant data in real time.The framework also works on static data by converting them to data streams using the Kafka tool.The experiments conducted on real time and simulated tweets of sports,health care andfinancial topics show that the proposed system is able to detect sentiment drifts and maintain the performance of the classification model,with accuracies of 91%,87%and 90%,respectively.Though the results have been provided only for a few topics,as a proof of concept,this framework can be applied to detect sentiment drifts and perform sentiment classification on real time data streams of any topic.展开更多
With the widespread use of streaming media application on the Internet, a significant change in Internet workload will be provoked. Caching is one of the applied techniques for enhancing the scalability of streaming s...With the widespread use of streaming media application on the Internet, a significant change in Internet workload will be provoked. Caching is one of the applied techniques for enhancing the scalability of streaming system and reducing the workload of server/network. Aiming at the characteristics of broadband network in community, we propose a popularity-based server-proxy caching strategy for streaming medias, and implement the prototype of streaming proxy caching based on this strategy, using RTSP as control protocol and RTP for content transport. This system can play a role in decreasing server load, reducing the traffic from streaming server to proxy, and improving the start-up latency of the client. Key words streaming server - proxy - cache - streaming media - real time streaming protocol CLC number TP 302 - TP 333 Foundation item: Supported by the National High Technology Development 863 Program of China (2001AA111011).Biography: Tan Jin (1962-), male, Ph. D candidate, research direction: network communications, multimedia technologies, and web caching.展开更多
文摘Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time.This work proposes an adap-tive learning algorithm-based framework,Twitter Sentiment Drift Analysis-Bidir-ectional Encoder Representations from Transformers(TSDA-BERT),which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant data in real time.The framework also works on static data by converting them to data streams using the Kafka tool.The experiments conducted on real time and simulated tweets of sports,health care andfinancial topics show that the proposed system is able to detect sentiment drifts and maintain the performance of the classification model,with accuracies of 91%,87%and 90%,respectively.Though the results have been provided only for a few topics,as a proof of concept,this framework can be applied to detect sentiment drifts and perform sentiment classification on real time data streams of any topic.
文摘With the widespread use of streaming media application on the Internet, a significant change in Internet workload will be provoked. Caching is one of the applied techniques for enhancing the scalability of streaming system and reducing the workload of server/network. Aiming at the characteristics of broadband network in community, we propose a popularity-based server-proxy caching strategy for streaming medias, and implement the prototype of streaming proxy caching based on this strategy, using RTSP as control protocol and RTP for content transport. This system can play a role in decreasing server load, reducing the traffic from streaming server to proxy, and improving the start-up latency of the client. Key words streaming server - proxy - cache - streaming media - real time streaming protocol CLC number TP 302 - TP 333 Foundation item: Supported by the National High Technology Development 863 Program of China (2001AA111011).Biography: Tan Jin (1962-), male, Ph. D candidate, research direction: network communications, multimedia technologies, and web caching.