Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
This paper introduces a new Chinese Sign Language recognition (CSLR) system and a method of real time tracking face and hand applied in the system. In the method, an improved agent algorithm is used to extract the reg...This paper introduces a new Chinese Sign Language recognition (CSLR) system and a method of real time tracking face and hand applied in the system. In the method, an improved agent algorithm is used to extract the region of face and hand and track them. Kalman filter is introduced to forecast the position and rectangle of search, and self adapting of target color is designed to counteract the effect of illumination.展开更多
Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to ...Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.展开更多
Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;how...Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;however, quality assurance (QA) for respiratory-gated RT using the RTRT system has not been reported. The purpose of this study was to perform QA for respiratorygated RT using the RTRT system. Materials and Methods: The RTRT system detected the position of the fiducial marker and radiation delivery gated to the motion of the marker was performed. The dynamic anthropomorphic thorax phantom was positioned at the isocenter using the fiducial marker in the phantom. The phantom was irradiated only when the fiducial marker was within a three-dimensional gating window of ±2 mm from the planned position. First, the absolute doses were measured using anionization chamber inserted in the phantom under the stationary, gating and non-gating state for sinusoidal (nadir-to-peak amplitude [A]: 20 - 40 mm, breathing period [T]: 2 - 4 s) and the basic respiratory patterns. Second, the dose profiles were measured using Gafchromic films in the phantom under the same conditions. Differences between dose profiles were calculated to evaluate the dosimetric and geometric accuracy. Finally, differences between the actual and measured position of the fiducial marker were calculated to evaluate the tracking accuracy for sinusoidal and basic respiratory patterns. Results: For the sinusoidal patterns, the relative doses were 0.93 for non-gating and 0.99 for gating (A = 20 mm, T = 2 s), 0.94 for non-gating and 1.00 for gating (A = 20 mm, T = 4 s), 0.55 for non-gating and 1.00 for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, the relative doses were 1.00 for non-gating and 1.00 for gating, respectively. Compared to the stationary conditions, the differences in lateral distance between the 90% dose of dose profiles were 6.23 mm for non-gating and 0.36 mm for gating (A = 20 mm, T = 2 s), 8.79 mm for non-gating and 1.73 mm for gating (A = 20 mm, T = 4 s), 18.37 mm for non-gating and 0.67 mm for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, those were 5.23 mm for non-gating and 0.35 mm for gating. The root mean square (RMS) values of the tracking error were 0.18 mm (A = 20 mm, T = 2 s), 0.14 mm (A = 20 mm, T = 4 s), and 0.21 mm (A = 40 mm, T = 4 s) for sinusoidal and 0.79 mm for the basic respiratory pattern, respectively. Conclusion: We conducted QA for respiratory-gated RT using the RTRT system. The respiratory-gated RT using the RTRT system reduced the blurring effects on dose distribution with high dosimetric and geometric accuracy.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.展开更多
The traditional oriented FAST and rotated BRIEF(ORB) algorithm has problems of instability and repetition of keypoints and it does not possess scale invariance. In order to deal with these drawbacks, a modified ORB...The traditional oriented FAST and rotated BRIEF(ORB) algorithm has problems of instability and repetition of keypoints and it does not possess scale invariance. In order to deal with these drawbacks, a modified ORB(MORB) algorithm is proposed. In order to improve the precision of matching and tracking, this paper puts forward an MOK algorithm that fuses MORB and Kanade-Lucas-Tomasi(KLT). By using Kalman, the object's state in the next frame is predicted in order to reduce the size of search window and improve the real-time performance of object tracking. The experimental results show that the MOK algorithm can accurately track objects with deformation or with background clutters, exhibiting higher robustness and accuracy on diverse datasets. Also, the MOK algorithm has a good real-time performance with the average frame rate reaching 90.8 fps.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.展开更多
Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin...Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.展开更多
The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-ME...The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-MES), real-time e-quality tracking (e-QT), in which real-time data are computed, has played more and more important roles in manufacturing. This paper presents an e-QT model through the study of real-time status data tracking and quality data collecting. An implementing architecture of the e-QT model is constructed on the basis of radio frequency identification devices (RFID) data-tracking network. In order to develop the e-QT system, some key enabling technologies, such as configuration, data collection, and data processing, etc, are studied. The relation schema between hardware is built for the RFID data-tracking network based on the configuration technique. Real-time data are sampled by using data collecting technique. Furthermore, real-time status and quality data in a shop-floor can be acquired in terms of using the real-time data computing method. Finally, a prototype system is developed and a running example is given so as to verify the feasibility of methods proposed in this paper. The proposed research provides effective e-quality tracking theoretical foundation through the use of RFID technology for the discrete manufacturing.展开更多
The prediction of helicopter′s track is very important for Anti-Helicopter Mine System (AHMS) in the battle. However, it is very difficult to get an accurate and reliable prediction when the data is very limited. Thi...The prediction of helicopter′s track is very important for Anti-Helicopter Mine System (AHMS) in the battle. However, it is very difficult to get an accurate and reliable prediction when the data is very limited. This paper tries to establish a track forecast model based on the grey system theory to predict the radial distance, the azimuth and the elevation of a helicopter real-timely. The forecast model of grey system can directly predict the helicopter′s track, with out the need of coordinate conversion (polar coordinate to rectangular coordinate). So the measurement noise is relatively independent, the prediction accuracy can be improved. In the period of sampling, GM model has been established on line to improve prediction precision. The results of simulation indicate that higher prediction precision can be obtained with fewer surveying data.展开更多
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
文摘This paper introduces a new Chinese Sign Language recognition (CSLR) system and a method of real time tracking face and hand applied in the system. In the method, an improved agent algorithm is used to extract the region of face and hand and track them. Kalman filter is introduced to forecast the position and rectangle of search, and self adapting of target color is designed to counteract the effect of illumination.
文摘Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.
文摘Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;however, quality assurance (QA) for respiratory-gated RT using the RTRT system has not been reported. The purpose of this study was to perform QA for respiratorygated RT using the RTRT system. Materials and Methods: The RTRT system detected the position of the fiducial marker and radiation delivery gated to the motion of the marker was performed. The dynamic anthropomorphic thorax phantom was positioned at the isocenter using the fiducial marker in the phantom. The phantom was irradiated only when the fiducial marker was within a three-dimensional gating window of ±2 mm from the planned position. First, the absolute doses were measured using anionization chamber inserted in the phantom under the stationary, gating and non-gating state for sinusoidal (nadir-to-peak amplitude [A]: 20 - 40 mm, breathing period [T]: 2 - 4 s) and the basic respiratory patterns. Second, the dose profiles were measured using Gafchromic films in the phantom under the same conditions. Differences between dose profiles were calculated to evaluate the dosimetric and geometric accuracy. Finally, differences between the actual and measured position of the fiducial marker were calculated to evaluate the tracking accuracy for sinusoidal and basic respiratory patterns. Results: For the sinusoidal patterns, the relative doses were 0.93 for non-gating and 0.99 for gating (A = 20 mm, T = 2 s), 0.94 for non-gating and 1.00 for gating (A = 20 mm, T = 4 s), 0.55 for non-gating and 1.00 for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, the relative doses were 1.00 for non-gating and 1.00 for gating, respectively. Compared to the stationary conditions, the differences in lateral distance between the 90% dose of dose profiles were 6.23 mm for non-gating and 0.36 mm for gating (A = 20 mm, T = 2 s), 8.79 mm for non-gating and 1.73 mm for gating (A = 20 mm, T = 4 s), 18.37 mm for non-gating and 0.67 mm for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, those were 5.23 mm for non-gating and 0.35 mm for gating. The root mean square (RMS) values of the tracking error were 0.18 mm (A = 20 mm, T = 2 s), 0.14 mm (A = 20 mm, T = 4 s), and 0.21 mm (A = 40 mm, T = 4 s) for sinusoidal and 0.79 mm for the basic respiratory pattern, respectively. Conclusion: We conducted QA for respiratory-gated RT using the RTRT system. The respiratory-gated RT using the RTRT system reduced the blurring effects on dose distribution with high dosimetric and geometric accuracy.
基金Foundation of the Robotics Laboratory, Chinese Academy of Sciences (No: RL200002)
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.
基金supported by the National Natural Science Foundation of China(61471194)the Fundamental Research Funds for the Central Universities+2 种基金the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China(20155552050)the CASC(China Aerospace Science and Technology Corporation) Aerospace Science and Technology Innovation Foundation Projectthe Nanjing University of Aeronautics And Astronautics Graduate School Innovation Base(Laboratory)Open Foundation Program(kfjj20151505)
文摘The traditional oriented FAST and rotated BRIEF(ORB) algorithm has problems of instability and repetition of keypoints and it does not possess scale invariance. In order to deal with these drawbacks, a modified ORB(MORB) algorithm is proposed. In order to improve the precision of matching and tracking, this paper puts forward an MOK algorithm that fuses MORB and Kanade-Lucas-Tomasi(KLT). By using Kalman, the object's state in the next frame is predicted in order to reduce the size of search window and improve the real-time performance of object tracking. The experimental results show that the MOK algorithm can accurately track objects with deformation or with background clutters, exhibiting higher robustness and accuracy on diverse datasets. Also, the MOK algorithm has a good real-time performance with the average frame rate reaching 90.8 fps.
基金FoundationoftheRoboticsLaboratoryChineseAcademyofSciences (No :RL2 0 0 0 0 2 )
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.
基金National Natural Science Foundation of China(41475060,41275067,41405060)
文摘Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.
基金supported by Natinoal Basic Research Program of China (973 Program, Grant No. 2011CB706805)National Natural Science Foundation of China (Grant No. 50875204)
文摘The method of acquiring the real-time data has influenced the implementation of the manufacturing execution system (MES). Accompanied with turning the MES into service-oriented manufacturing execution system (so-MES), real-time e-quality tracking (e-QT), in which real-time data are computed, has played more and more important roles in manufacturing. This paper presents an e-QT model through the study of real-time status data tracking and quality data collecting. An implementing architecture of the e-QT model is constructed on the basis of radio frequency identification devices (RFID) data-tracking network. In order to develop the e-QT system, some key enabling technologies, such as configuration, data collection, and data processing, etc, are studied. The relation schema between hardware is built for the RFID data-tracking network based on the configuration technique. Real-time data are sampled by using data collecting technique. Furthermore, real-time status and quality data in a shop-floor can be acquired in terms of using the real-time data computing method. Finally, a prototype system is developed and a running example is given so as to verify the feasibility of methods proposed in this paper. The proposed research provides effective e-quality tracking theoretical foundation through the use of RFID technology for the discrete manufacturing.
文摘The prediction of helicopter′s track is very important for Anti-Helicopter Mine System (AHMS) in the battle. However, it is very difficult to get an accurate and reliable prediction when the data is very limited. This paper tries to establish a track forecast model based on the grey system theory to predict the radial distance, the azimuth and the elevation of a helicopter real-timely. The forecast model of grey system can directly predict the helicopter′s track, with out the need of coordinate conversion (polar coordinate to rectangular coordinate). So the measurement noise is relatively independent, the prediction accuracy can be improved. In the period of sampling, GM model has been established on line to improve prediction precision. The results of simulation indicate that higher prediction precision can be obtained with fewer surveying data.