In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation...In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation results show that the performance of our presented mechanism in this paper is greatly improved, much better than that of the other three mechanisms: earliest deadline first (EDF), highest value first (HVF) and highest density first (HDF), under the same conditions of all nominal loads and task type proportions.展开更多
A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-base...A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.展开更多
针对由周期任务和零星任务形成的实时混合任务集进行合理调度问题,文中提出了一种基于零松弛度边界公平(Boundary Fair until Zero Laxity,BFZL)的实时混合任务算法。该算法在改进边界公平(Improved Boundary Fair,I-BF)实时混合任务算...针对由周期任务和零星任务形成的实时混合任务集进行合理调度问题,文中提出了一种基于零松弛度边界公平(Boundary Fair until Zero Laxity,BFZL)的实时混合任务算法。该算法在改进边界公平(Improved Boundary Fair,I-BF)实时混合任务算法基础上,通过引入最小松弛度优先(Least Laxity First,LLF)算法中的松弛度参数来改进判定任务的优先级,并提出基于松弛度与启发式策略相结合的启发式算法改进任务的分配策略。实验结果表明,BFZL算法能够满足系统实时性,并达到了算法优化目的。通过数据对比分析可知,该算法相比于原始算法,零星任务的平均响应时间降低了约26%,上下文切换减少了约28%,迁移减少了约50%。该算法在调度开销方面也具有一定优势。展开更多
基金supported by the Shanghai Applied Materials Foundation (Grant No.06SA18)
文摘In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation results show that the performance of our presented mechanism in this paper is greatly improved, much better than that of the other three mechanisms: earliest deadline first (EDF), highest value first (HVF) and highest density first (HDF), under the same conditions of all nominal loads and task type proportions.
文摘A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.
文摘针对由周期任务和零星任务形成的实时混合任务集进行合理调度问题,文中提出了一种基于零松弛度边界公平(Boundary Fair until Zero Laxity,BFZL)的实时混合任务算法。该算法在改进边界公平(Improved Boundary Fair,I-BF)实时混合任务算法基础上,通过引入最小松弛度优先(Least Laxity First,LLF)算法中的松弛度参数来改进判定任务的优先级,并提出基于松弛度与启发式策略相结合的启发式算法改进任务的分配策略。实验结果表明,BFZL算法能够满足系统实时性,并达到了算法优化目的。通过数据对比分析可知,该算法相比于原始算法,零星任务的平均响应时间降低了约26%,上下文切换减少了约28%,迁移减少了约50%。该算法在调度开销方面也具有一定优势。