In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information an...“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.展开更多
Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, ho...Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, how to design a system for real-time traffic flow prediction and receive high accuracy of prediction are urgent problems for both researchers and equipment suppliers. This paper presents a novel real-time system for traffic flow prediction. Different from the single algorithm for traffic flow prediction, our novel system firstly utilizes dynamic time wrapping to judge whether traffic flow data has regularity,realizing traffic flow data classification. After traffic flow data classification, we respectively make use of XGBoost and wavelet transform-echo state network to predict traffic flow data according to their regularity. Moreover, in order to realize real-time classification and prediction, we apply Spark/Hadoop computing platform to process large amounts of traffic data. Numerical results show that the proposed novel system has better performance and higher accuracy than other schemes.展开更多
This paper presents a method of determining handover traffic and mean channel occu-pancy time of a traffic model for the LEO(Low Earth Orbit)satellite networks.The mainideas are that the handover traffic is mainly due...This paper presents a method of determining handover traffic and mean channel occu-pancy time of a traffic model for the LEO(Low Earth Orbit)satellite networks.The mainideas are that the handover traffic is mainly due to the movement of the satellite and that thevelocity of the mobile terminals and earth rotation are ignored.The performance level can becalculated according to different handover queuing models.展开更多
Daily Electronic Toll Collection(ETC)traffic flow prediction is one of the fundamental processes in ETC management.The precise prediction of traffic flow provides instructions for transportation hub management solutio...Daily Electronic Toll Collection(ETC)traffic flow prediction is one of the fundamental processes in ETC management.The precise prediction of traffic flow provides instructions for transportation hub management solution planning and ETC lane construction.At present,some of studies are proposed in forecasting traffic flow.However,most studies of model presentation are in the form of mathematical expressions,and it is difficult to describe the trend accurately.Therefore,an ETC traffic flow prediction model based on k nearest neighbor searching(k-NN)and Back Propagation(BP)neural network is proposed,which takes the effect of external factors like holiday,the free of highway and weather etc.into consideration.The traffic flow data of highway ETC lane somewhere is used for prediction.The prediction results indicate that the total average absolute relative error is 5.01%.The accuracy suggests its advantage in traffic flow prediction and on site application.展开更多
The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg...The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.展开更多
As the network sizes continue to increase,network traffic grows exponentially.In this situation,how to accurately predict network traffic to serve customers better has become one of the issues that Internet service pr...As the network sizes continue to increase,network traffic grows exponentially.In this situation,how to accurately predict network traffic to serve customers better has become one of the issues that Internet service providers care most about.Current traditional network models cannot predict network traffic that behaves as a nonlinear system.In this paper,a long short-term memory(LSTM)neural network model is proposed to predict network traffic that behaves as a nonlinear system.According to characteristics of autocorrelation,an autocorrelation coefficient is added to the model to improve the accuracy of the prediction model.Several experiments were conducted using real-world data,showing the effectiveness of LSTM model and the improved accuracy with autocorrelation considered.The experimental results show that the proposed model is efficient and suitable for real-world network traffic prediction.展开更多
Network traffic prediction plays a fundamental role in characterizing the network performance and it is of significant interests in many network applications, such as admission control or network management. Therefore...Network traffic prediction plays a fundamental role in characterizing the network performance and it is of significant interests in many network applications, such as admission control or network management. Therefore, The main idea behind this work, is the development of a WIMAX Traffic Forecasting System for predicting traffic time series based on the daily and monthly traffic data recorded (TRD) with association of feed forward multi-layer perceptron (FFMLP). The quality of forecasting WIMAX Traffic obtained by comparing different configurations of the FFMLP that consist of investigating different FFMLP model architectures and different Learning Algorithms. The decision of changing the FFMLP architecture is essentially based on prediction results to obtain the FFMLP model for flow traffic prediction model. The different configurations were tested using daily and monthly real traffic data recorded at each of the two base stations (A and B) that belongs to a Libyan WiMAX Network. We evaluate our approach with statistical measurement and a good statistic measure of FMLP indicates the performance of selected neural network configuration. The developed system indicates promising results in which it successfully network traffic prediction through daily and monthly traffic data recorded (TRD) association with artificial neural network.展开更多
For the Asynchronous Transfer Mode (ATM) networks with time-varying multiple time-delays, a more realistic model for the available bit rate (ABR) traffic class with explicit rate feedback is introduced. A fuzzy-im...For the Asynchronous Transfer Mode (ATM) networks with time-varying multiple time-delays, a more realistic model for the available bit rate (ABR) traffic class with explicit rate feedback is introduced. A fuzzy-immune controller is designed, which can adjust the rates of ABR on-line, overcome the bad effect caused by the saturation nonlinearity and satisfy the weighted fairness. Also, the sufficient condition that guarantees the stability of the closed-loop system with a fuzzy-immune controller is presented in theory for the first time. The algorithm exhibits good performance, and most importantly, has a solid theoretical foundation and can be implemented in practice easily. Simulation results show that the control system is rapid, adaptive, robust, and meanwhile, the quality of service (QoS) is guaranteed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
文摘“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.
基金partly supported by the National Natural Science Foundation of China(Grants No.61571240,61671474)the Jiangsu Science Fund for Excellent Young Scholars(No.BK20170089)+2 种基金the ZTE program“The Prediction of Wireline Network Malfunction and Traffic Based on Big Data,”(No.2016ZTE04-07)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0916)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, how to design a system for real-time traffic flow prediction and receive high accuracy of prediction are urgent problems for both researchers and equipment suppliers. This paper presents a novel real-time system for traffic flow prediction. Different from the single algorithm for traffic flow prediction, our novel system firstly utilizes dynamic time wrapping to judge whether traffic flow data has regularity,realizing traffic flow data classification. After traffic flow data classification, we respectively make use of XGBoost and wavelet transform-echo state network to predict traffic flow data according to their regularity. Moreover, in order to realize real-time classification and prediction, we apply Spark/Hadoop computing platform to process large amounts of traffic data. Numerical results show that the proposed novel system has better performance and higher accuracy than other schemes.
文摘This paper presents a method of determining handover traffic and mean channel occu-pancy time of a traffic model for the LEO(Low Earth Orbit)satellite networks.The mainideas are that the handover traffic is mainly due to the movement of the satellite and that thevelocity of the mobile terminals and earth rotation are ignored.The performance level can becalculated according to different handover queuing models.
文摘Daily Electronic Toll Collection(ETC)traffic flow prediction is one of the fundamental processes in ETC management.The precise prediction of traffic flow provides instructions for transportation hub management solution planning and ETC lane construction.At present,some of studies are proposed in forecasting traffic flow.However,most studies of model presentation are in the form of mathematical expressions,and it is difficult to describe the trend accurately.Therefore,an ETC traffic flow prediction model based on k nearest neighbor searching(k-NN)and Back Propagation(BP)neural network is proposed,which takes the effect of external factors like holiday,the free of highway and weather etc.into consideration.The traffic flow data of highway ETC lane somewhere is used for prediction.The prediction results indicate that the total average absolute relative error is 5.01%.The accuracy suggests its advantage in traffic flow prediction and on site application.
基金The National Natural Science Foundation of China (No.50422283)the Soft Science Research Project of Ministry of Housing and Urban-Rural Development of China (No.2008-K5-14)
文摘The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.2016ZTE04-11National Key Research and Development Program:Key Projects of International Scientific and Technological Innovation Cooperation Between Governments under Grant No.2016YFE0108000+1 种基金Fundamental Research Funds for the Central Universities under Grant(30918012204)Jiangsu Province Key Research and Development Program under Grant(BE2017739)
文摘As the network sizes continue to increase,network traffic grows exponentially.In this situation,how to accurately predict network traffic to serve customers better has become one of the issues that Internet service providers care most about.Current traditional network models cannot predict network traffic that behaves as a nonlinear system.In this paper,a long short-term memory(LSTM)neural network model is proposed to predict network traffic that behaves as a nonlinear system.According to characteristics of autocorrelation,an autocorrelation coefficient is added to the model to improve the accuracy of the prediction model.Several experiments were conducted using real-world data,showing the effectiveness of LSTM model and the improved accuracy with autocorrelation considered.The experimental results show that the proposed model is efficient and suitable for real-world network traffic prediction.
文摘Network traffic prediction plays a fundamental role in characterizing the network performance and it is of significant interests in many network applications, such as admission control or network management. Therefore, The main idea behind this work, is the development of a WIMAX Traffic Forecasting System for predicting traffic time series based on the daily and monthly traffic data recorded (TRD) with association of feed forward multi-layer perceptron (FFMLP). The quality of forecasting WIMAX Traffic obtained by comparing different configurations of the FFMLP that consist of investigating different FFMLP model architectures and different Learning Algorithms. The decision of changing the FFMLP architecture is essentially based on prediction results to obtain the FFMLP model for flow traffic prediction model. The different configurations were tested using daily and monthly real traffic data recorded at each of the two base stations (A and B) that belongs to a Libyan WiMAX Network. We evaluate our approach with statistical measurement and a good statistic measure of FMLP indicates the performance of selected neural network configuration. The developed system indicates promising results in which it successfully network traffic prediction through daily and monthly traffic data recorded (TRD) association with artificial neural network.
基金the open subject for Key Laboratory of Process Industry Automation of Ministry of Education.
文摘For the Asynchronous Transfer Mode (ATM) networks with time-varying multiple time-delays, a more realistic model for the available bit rate (ABR) traffic class with explicit rate feedback is introduced. A fuzzy-immune controller is designed, which can adjust the rates of ABR on-line, overcome the bad effect caused by the saturation nonlinearity and satisfy the weighted fairness. Also, the sufficient condition that guarantees the stability of the closed-loop system with a fuzzy-immune controller is presented in theory for the first time. The algorithm exhibits good performance, and most importantly, has a solid theoretical foundation and can be implemented in practice easily. Simulation results show that the control system is rapid, adaptive, robust, and meanwhile, the quality of service (QoS) is guaranteed.