期刊文献+
共找到338,696篇文章
< 1 2 250 >
每页显示 20 50 100
An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate 被引量:1
1
作者 Yingui Qiu Shuai Huang +3 位作者 Danial Jahed Armaghani Biswajeet Pradhan Annan Zhou Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2873-2897,共25页
As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance le... As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance. 展开更多
关键词 Tunnel boring machine random forest GOGHS optimization PSO optimization GA optimization ABC optimization SHAP
下载PDF
Frilled Lizard Optimization: A Novel Bio-Inspired Optimizer for Solving Engineering Applications 被引量:1
2
作者 Ibraheem Abu Falahah Osama Al-Baik +6 位作者 Saleh Alomari Gulnara Bektemyssova Saikat Gochhait Irina Leonova OmParkash Malik Frank Werner Mohammad Dehghani 《Computers, Materials & Continua》 SCIE EI 2024年第6期3631-3678,共48页
This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspi... This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspiration from the sit-and-wait hunting strategy of these lizards.The algorithm’s core principles are meticulously detailed and mathematically structured into two distinct phases:(i)an exploration phase,which mimics the lizard’s sudden attack on its prey,and(ii)an exploitation phase,which simulates the lizard’s retreat to the treetops after feeding.To assess FLO’s efficacy in addressing optimization problems,its performance is rigorously tested on fifty-two standard benchmark functions.These functions include unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions,as well as the challenging CEC 2017 test suite.FLO’s performance is benchmarked against twelve established metaheuristic algorithms,providing a comprehensive comparative analysis.The simulation results demonstrate that FLO excels in both exploration and exploitation,effectively balancing these two critical aspects throughout the search process.This balanced approach enables FLO to outperform several competing algorithms in numerous test cases.Additionally,FLO is applied to twenty-two constrained optimization problems from the CEC 2011 test suite and four complex engineering design problems,further validating its robustness and versatility in solving real-world optimization challenges.Overall,the study highlights FLO’s superior performance and its potential as a powerful tool for tackling a wide range of optimization problems. 展开更多
关键词 optimIZATION engineering BIO-INSPIRED METAHEURISTIC frilled lizard exploration EXPLOITATION
下载PDF
Optimized sequential therapy vs 10- and 14-d concomitant therapy for eradicating Helicobacter pylori: A randomized clinical trial 被引量:1
3
作者 Hassan Seddik Jihane Benass +3 位作者 Sanaa Berrag Asmae Sair Reda Berraida Hanae Boutallaka 《World Journal of Gastroenterology》 SCIE CAS 2024年第6期556-564,共9页
BACKGROUND A cure for Helicobacter pylori(H.pylori)remains a problem of global concern.The prevalence of antimicrobial resistance is widely rising and becoming a challenging issue worldwide.Optimizing sequential thera... BACKGROUND A cure for Helicobacter pylori(H.pylori)remains a problem of global concern.The prevalence of antimicrobial resistance is widely rising and becoming a challenging issue worldwide.Optimizing sequential therapy seems to be one of the most attractive strategies in terms of efficacy,tolerability and cost.The most common sequential therapy consists of a dual therapy[proton-pump inhibitors(PPIs)and amoxicillin]for the first period(5 to 7 d),followed by a triple therapy for the second period(PPI,clarithromycin and metronidazole).PPIs play a key role in maintaining a gastric pH at a level that allows an optimal efficacy of antibiotics,hence the idea of using new generation molecules.This open-label prospective study randomized 328 patients with confirmed H.pylori infection into three groups(1:1:1):The first group received quadruple therapy consisting of twice-daily(bid)omeprazole 20 mg,amoxicillin 1 g,clarith-romycin 500 mg and metronidazole 500 mg for 10 d(QT-10),the second group received a 14 d quadruple therapy following the same regimen(QT-14),and the third group received an optimized sequential therapy consisting of bid rabe-prazole 20 mg plus amoxicillin 1 g for 7 d,followed by bid rabeprazole 20 mg,clarithromycin 500 mg and metronidazole 500 mg for the next 7 d(OST-14).AEs were recorded throughout the study,and the H.pylori eradication rate was determined 4 to 6 wk after the end of treatment,using the 13C urea breath test.RESULTS In the intention-to-treat and per-protocol analysis,the eradication rate was higher in the OST-14 group compared to the QT-10 group:(93.5%,85.5%P=0.04)and(96.2%,89.5%P=0.03)respectively.However,there was no statist-ically significant difference in eradication rates between the OST-14 and QT-14 groups:(93.5%,91.8%P=0.34)and(96.2%,94.4%P=0.35),respectively.The overall incidence of AEs was significantly lower in the OST-14 group(P=0.01).Furthermore,OST-14 was the most cost-effective among the three groups.CONCLUSION The optimized 14-d sequential therapy is a safe and effective alternative.Its eradication rate is comparable to that of the 14-d concomitant therapy while causing fewer AEs and allowing a gain in terms of cost. 展开更多
关键词 Helicobacter pylori Quadruple therapy SEQUENTIAL Proton-pump inhibitor optimIZATION
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
4
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 Network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence 被引量:1
5
作者 Ali Hamid Farea Omar H.Alhazmi Kerem Kucuk 《Computers, Materials & Continua》 SCIE EI 2024年第2期1525-1545,共21页
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),... While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features. 展开更多
关键词 Internet of Things SECURITY anomaly detection and prevention system artificial intelligence optimization techniques
下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:1
6
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
7
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
8
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
9
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 Multi-objective optimization genetic algorithm ant lion optimizer METAHEURISTIC
下载PDF
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
10
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 Random forest regression model pile drivability Bayesian optimization particle swarm optimization
下载PDF
Retraction:Optimized Design of Bio-inspired Wind Turbine Blades
11
作者 Yuanjun Dai Dong Wang +1 位作者 Xiongfei Liu Weimin Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1665-1665,共1页
The published article titled“Optimized Design of Bio-inspired Wind Turbine Blades”has been retracted from Fluid Dynamics&Materials Processing.
关键词 TURBINE WIND optimized
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
12
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent Neural Network(RNN) Whale optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
A reduced combustion mechanism of ammonia/diesel optimized with multi-objective genetic algorithm
13
作者 Wanchen Sun Shaodian Lin +4 位作者 Hao Zhang Liang Guo Wenpeng Zeng Genan Zhu Mengqi Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期187-200,共14页
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ... For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios. 展开更多
关键词 AMMONIA DIESEL COMBUSTION Kinetic mechanism Multi-objective optimization
下载PDF
Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition
14
作者 Liya Yue Pei Hu +1 位作者 Shu-Chuan Chu Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1957-1975,共19页
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext... Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER. 展开更多
关键词 Speech emotion recognition filter-wrapper HIGH-DIMENSIONAL feature selection equilibrium optimizer MULTI-OBJECTIVE
下载PDF
Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau,China
15
作者 Qilong Song Jie Zhang +3 位作者 Fangfang Zhang Yufang Shen Shanchao Yue Shiqing Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1671-1684,共14页
Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the ef... Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau. 展开更多
关键词 maize yield N management economic optimal N rate Loess Plateau
下载PDF
Optimized parameters of downhole all-metal PDM based on genetic algorithm
16
作者 Jia-Xing Lu Ling-Rong Kong +2 位作者 Yu Wang Chao Feng Yu-Lin Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2663-2676,共14页
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,... Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology. 展开更多
关键词 Positive displacement motor Genetic algorithm Profile optimization Matlab programming Overflow area
下载PDF
Enhanced Growth Optimizer and Its Application to Multispectral Image Fusion
17
作者 Jeng-Shyang Pan Wenda Li +2 位作者 Shu-Chuan Chu Xiao Sui Junzo Watada 《Computers, Materials & Continua》 SCIE EI 2024年第11期3033-3062,共30页
The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environme... The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment.However,the original GO algorithm is constrained by two significant limitations:slow convergence and high mem-ory requirements.This restricts its application to large-scale and complex problems.To address these problems,this paper proposes an innovative enhanced growth optimizer(eGO).In contrast to conventional population-based optimization algorithms,the eGO algorithm utilizes a probabilistic model,designated as the virtual population,which is capable of accurately replicating the behavior of actual populations while simultaneously reducing memory consumption.Furthermore,this paper introduces the Lévy flight mechanism,which enhances the diversity and flexibility of the search process,thus further improving the algorithm’s global search capability and convergence speed.To verify the effectiveness of the eGO algorithm,a series of experiments were conducted using the CEC2014 and CEC2017 test sets.The results demonstrate that the eGO algorithm outperforms the original GO algorithm and other compact algorithms regarding memory usage and convergence speed,thus exhibiting powerful optimization capabilities.Finally,the eGO algorithm was applied to image fusion.Through a comparative analysis with the existing PSO and GO algorithms and other compact algorithms,the eGO algorithm demonstrates superior performance in image fusion. 展开更多
关键词 Growth optimizer probabilistic model Lévy flight image fusion
下载PDF
Optimized Binary Neural Networks for Road Anomaly Detection:A TinyML Approach on Edge Devices
18
作者 Amna Khatoon Weixing Wang +2 位作者 Asad Ullah Limin Li Mengfei Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期527-546,共20页
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N... Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks. 展开更多
关键词 Edge computing remote sensing TinyML optimization BNNs road anomaly detection QUANTIZATION model compression
下载PDF
MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors
19
作者 Ge Chu Chaohui Wang +2 位作者 Zhewei Yang Lin Qin Xin Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期395-404,共10页
The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived fro... The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)). 展开更多
关键词 metal-organic framework porous graphitic carbon optimized plateau capacity kinetic analysis lithium-ion capacitor
下载PDF
Seismic effectiveness evaluation and optimized design of tie up method for securing museum collections
20
作者 Wang Meng Yan Yi +3 位作者 Yang Weiguo Liu Pei Ge Jiaqi Ma Botao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期741-763,共23页
To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used ... To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended. 展开更多
关键词 tie up method museum collections shaking table test seismic effectiveness optimized design
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部