A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded ...A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils.展开更多
The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of...The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.展开更多
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical...In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.展开更多
We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter ...We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method overcomes the major difficulties of the variational method. RGAs also do not require coding and encoding procedures, so the computation time and complexity are reduced. The ground state energies of hydrogenic donors in GaAs-(Ga,Al)As quantum dots have been calculated for a range of the radius of the quantum dot radii of practical interest. They are compared with those obtained by the variational method. The results obtained demonstrate the proposed method is simple, accurate, and easy implement.展开更多
In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical ...In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.展开更多
Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to cont...Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.展开更多
A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selectio...A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design.展开更多
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使...针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。展开更多
基金Project supported by the China Postdoctoral Science Foundation,the Youth Foundation of Sichuan University(No.432028)and the National High-Tech Research and Development Program of China(863 Program)(No.2002AA2Z4251).
文摘A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils.
基金Project(2007CB714006) supported by the National Basic Research Program of China Project(90815023) supported by the National Natural Science Foundation of China
文摘The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.
文摘In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.
文摘We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method overcomes the major difficulties of the variational method. RGAs also do not require coding and encoding procedures, so the computation time and complexity are reduced. The ground state energies of hydrogenic donors in GaAs-(Ga,Al)As quantum dots have been calculated for a range of the radius of the quantum dot radii of practical interest. They are compared with those obtained by the variational method. The results obtained demonstrate the proposed method is simple, accurate, and easy implement.
文摘In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.
文摘Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.
文摘A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design.
文摘针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。