期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Application of Projection Pursuit Evaluation Model Based on Real-Coded Accelerating Genetic Algorithm in Evaluating Wetland Soil Quality Variations in the Sanjiang Plain, China 被引量:34
1
作者 FUQIANG XIEYONGGANG WEIZIMIN 《Pedosphere》 SCIE CAS CSCD 2003年第3期249-256,共8页
A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded ... A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils. 展开更多
关键词 EVALUATION projection pursuit evaluation model real-coded acceleratinggenetic algorithm soil quality variations
下载PDF
Inverse procedure for determining model parameter of soils using real-coded genetic algorithm 被引量:3
2
作者 李守巨 邵龙潭 +1 位作者 王吉喆 刘迎曦 《Journal of Central South University》 SCIE EI CAS 2012年第6期1764-1770,共7页
The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of... The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated. 展开更多
关键词 parameter estimation real-coded genetic algorithm tri-dimensional compression test gradient-based optimization
下载PDF
Efficient Numerical Optimization Algorithm Based on New Real-Coded Genetic Algorithm, AREX + JGG, and Application to the Inverse Problem in Systems Biology 被引量:1
3
作者 Asako Komori Yukihiro Maki +2 位作者 Masahiko Nakatsui Isao Ono Masahiro Okamoto 《Applied Mathematics》 2012年第10期1463-1470,共8页
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical... In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search. 展开更多
关键词 Inverse Problem S-SYSTEM FORMALISM Gene REGULATORY Network System Identification real-coded Genetic Algorithm
下载PDF
Adaptive Real-Coded Genetic Algorithm for Identifying Motor Systems
4
作者 Rong-Fong Fung Chun-Hung Lin 《Modern Mechanical Engineering》 2015年第3期69-86,共18页
In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical ... In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems. 展开更多
关键词 ADAPTIVE real-coded GENETIC Algorithm (ARGA) BRUSHLESS Direct Current MOTOR (BLDC) Electrical FAN Induction MOTOR System Identification
下载PDF
A Real-coded Genetic Algorithm Applied to Optimum Design of a Low Solidity Vaned Diffuser for Diffuser Pinup 被引量:3
5
作者 Jun LI Hiroshi TSUKAMOTO Fluid Engineering Laboratory, Department of Mechanical Engineering, Kyushu Institute of Technology Kitakyushu 804-8550, JAPAN 《Journal of Thermal Science》 SCIE EI CAS CSCD 2001年第4期301-308,共8页
A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selectio... A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design. 展开更多
关键词 real-coded genetic algorithms low solidity vaned diffuser diffuser pump OPTIMIZATION design.
原文传递
Real-Code Genetic Algorithm for Ground State Energies of Hydrogenic Donors in GaAs-(Ga,Al)As Quantum Dots
6
作者 YAN Hai-Qing TANG Chen +1 位作者 LIU Ming ZHANG Hao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4X期727-730,共4页
We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter ... We present a global optimization method, called the real-code genetic algorithm (RGA), to the ground state energies. The proposed method does not require partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method overcomes the major difficulties of the variational method. RGAs also do not require coding and encoding procedures, so the computation time and complexity are reduced. The ground state energies of hydrogenic donors in GaAs-(Ga,Al)As quantum dots have been calculated for a range of the radius of the quantum dot radii of practical interest. They are compared with those obtained by the variational method. The results obtained demonstrate the proposed method is simple, accurate, and easy implement. 展开更多
关键词 ground state energy quantum dots real-code genetic algorithms
下载PDF
Incremental learning of the triangular membership functions based on single-pass FCM and CHC genetic model 被引量:1
7
作者 霍纬纲 Qu Feng Zhang Yuxiang 《High Technology Letters》 EI CAS 2017年第1期7-15,共9页
In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the r... In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC is generated randomly according to the cluster center and constraint conditions among TMFs. Then a new population for incremental learning is composed of the excellent chromosomes stored in the first genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The experiments on real datasets show that the number of generations converging to the solution of the proposed approach is less than that of the existing batch learning approach. The quality of TMFs generated by the approach is comparable to that of the batch learning approach. Compared with the existing incremental learning strategy,the proposed approach is superior in terms of the quality of TMFs and time cost. 展开更多
关键词 incremental learning triangular membership function TMFs) fuzzy associationrule (FAR) real-coded CHC
下载PDF
Supervised Fuzzy Mixture of Local Feature Models
8
作者 Mingyang Xu Michael Golay 《Intelligent Information Management》 2011年第3期87-103,共17页
This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex ... This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex sys-tem, we propose a mixture of local feature models to overcome these weaknesses. The basic idea is to split the entire input space into operating domains, and a recently developed feature-based model combination method is applied to build local models for each region. To realize this idea, three steps are required, which include clustering, local modeling and model combination, governed by a single objective function. An adaptive fuzzy parametric clustering algorithm is proposed to divide the whole input space into operating regimes, local feature models are created in each individual region by applying a recently developed fea-ture-based model combination method, and finally they are combined into a single mixture model. Corre-spondingly, a three-stage procedure is designed to optimize the complete objective function, which is actu-ally a hybrid Genetic Algorithm (GA). Our simulation results show that the adaptive fuzzy mixture of local feature models turns out to be superior to global models. 展开更多
关键词 Adaptive FUZZY MIXTURE Supervised CLUSTERING Local Feature Model PCA ICA Phase Transition FUZZY PARAMETRIC CLUSTERING real-coded GENETIC Algorithm
下载PDF
Recent Advances in Global Optimization for Combinatorial Discrete Problems 被引量:1
9
作者 Adel R. Awad Samia O. Chiban 《Applied Mathematics》 2015年第11期1842-1856,共15页
The optimization of discrete problems is largely encountered in engineering and information domains. Solving these problems with continuous-variables approach then convert the continuous variables to discrete ones doe... The optimization of discrete problems is largely encountered in engineering and information domains. Solving these problems with continuous-variables approach then convert the continuous variables to discrete ones does not guarantee the optimal global solution. Evolutionary Algorithms (EAs) have been applied successfully in combinatorial discrete optimization. Here, the mathematical basics of real-coding Genetic Algorithm are presented in addition to three other Evolutionary Algorithms: Particle Swarm Optimization (PSO), Ant Colony Algorithms (ACOA) and Harmony Search (HS). The EAs are presented in as unifying notations as possible in order to facilitate understanding and comparison. Our combinatorial discrete problem example is the famous benchmark case of New-York Water Supply System WSS network. The mathematical construction in addition to the obtained results of Real-coding GA applied to this case study (authors), are compared with those of the three other algorithms available in literature. The real representation of GA, with its two operators: mutation and crossover, functions significantly faster than binary and other coding and illustrates its potential as a substitute to the traditional optimization methods for water systems design and planning. The real (actual) representation is very effective and provides two near-optimal feasible solutions to the New York tunnels problem. We found that the four EAs are capable to afford hydraulically-feasible solutions with reasonable cost but our real-coding GA takes more evaluations to reach the optimal or near-optimal solutions compared to other EAs namely the HS. HS approach discovers efficiently the research space because of the random generation of solutions in every iteration, and the ability of choosing neighbor values of solution elements “changing the diameter of the pipe to the next greater or smaller commercial diameter” beside keeping good current solutions. Our proposed promising point to improve the performance of GA is by introducing completely new individuals in every generation in GA using a new “immigration” operator beside “mutation” and “crossover”. 展开更多
关键词 EVOLUTIONARY ALGORITHMS META-HEURISTIC ALGORITHMS real-coding GENETIC ALGORITHMS Water Supply System New-York TUNNELS Optimal Design
下载PDF
REAL CODED GENETIC ALGORITHM FOR STOCHASTIC HYDROTHERMAL GENERATION SCHEDULING 被引量:3
10
作者 Jarnail S.DHILLON J.S.DHILLON D.P.KOTHARI 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2011年第1期87-109,共23页
The intent of this paper is to schedule short-term hydrothermal system probabilistically considering stochastic operating cost curves for thermal power generation units and uncertainties in load demand and reservoir w... The intent of this paper is to schedule short-term hydrothermal system probabilistically considering stochastic operating cost curves for thermal power generation units and uncertainties in load demand and reservoir water inflows. Therefore, the stochastic multi-objective hydrothermal generation scheduling problem is formulated with explicit recognition of uncertainties in the system production cost coefficients and system load, which are treated as random variable. Fuzzy methodology has been exploited for solving a decision making problem involving multiplicity of objectives and selection criterion for best compromised solution. A real-coded genetic algorithm with arithmetic-average-bound-blend crossover and wavelet mutation operator is applied to solve short-term variable-head hydrothermal scheduling problem. Initial feasible solution has been obtained by implementing the random heuristic search. The search is performed within the operating generation limits. Equality constraints that satisfy the demand during each time interval are considered by introducing a slack thermal generating unit for each time interval. Whereas the equality constraint which satisfies the consumption of available water to its full extent for the whole scheduling period is considered by introducing slack hydro generating unit for a particular time interval. Operating limit violation by slack hydro and slack thermal generating unit is taken care using exterior penalty method. The effectiveness of the proposed method is demonstrated on two sample systems. 展开更多
关键词 Stochastic multi-objective optimization real-coded genetic algorithm fuzzy set economicload dispatch
原文传递
A New Method of Portfolio Optimization Under Cumulative Prospect Theory 被引量:1
11
作者 Chao Gong Chunhui Xu +1 位作者 Masakazu Ando Xiangming Xi 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第1期75-86,共12页
In this paper, the portfolio selection problem under Cumulative Prospect Theory (CPT) is investigated and a model of portfolio optimization is presented. This model is solved by coupling scenario generation techniqu... In this paper, the portfolio selection problem under Cumulative Prospect Theory (CPT) is investigated and a model of portfolio optimization is presented. This model is solved by coupling scenario generation techniques with a genetic algorithm. Moreover, an Adaptive Real-Coded Genetic Algorithm (ARCGA) is developed to find the optimal solution for the proposed model. Computational results show that the proposed method solves the portfolio selection model and that ARCGA is an effective and stable algorithm. We compare the portfolio choices of CPT investors based on various bootstrap techniques for scenario generation and empirically examine the effect of reference points on investment behavior. 展开更多
关键词 portfolio choice cumulative prospect theory bootstrap method adaptive real-coded genetic algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部