Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral pos...Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.展开更多
In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.Howe...In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-b...Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-based alignment(BBA)is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes.For storage rings with many quadrupoles,the conventional BBA procedure is time-consuming,particularly in the commissioning phase,because of the necessary iterative process.In addition,the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics.In this study,a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy.This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA.The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments.The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA.The development of this new method and the corresponding experiments are reported in this paper.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the...The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.展开更多
In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate...In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values.展开更多
To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r...The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.展开更多
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel...Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.展开更多
Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing...Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.展开更多
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro...The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.展开更多
Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite thes...Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies.展开更多
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
文摘Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.
基金supported in part by NSF of Shaanxi Province under Grant 2021JM-143the Fundamental Research Funds for the Central Universities under Grant JB211502+5 种基金the Project of Key Laboratory of Science&Technology on Communication Network under Grant 6142104200412the National Natural Science Foundation of China under Grant 62072351the Academy of Finland under Grant 308087,Grant 335262 and Grant 345072the Shaanxi Innovation Team Project under Grant 2018TD-007the 111 Project under Grant B16037,JSPS KAKENHI Grant Number JP20K14742the Project of Cyber Security Establishment with Inter University Cooperation.
文摘In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
基金supported by the National Natural Science Foundation of China(No.11975227)。
文摘Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-based alignment(BBA)is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes.For storage rings with many quadrupoles,the conventional BBA procedure is time-consuming,particularly in the commissioning phase,because of the necessary iterative process.In addition,the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics.In this study,a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy.This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA.The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments.The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA.The development of this new method and the corresponding experiments are reported in this paper.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875031,52242507)Beijing Municipal Natural Science Foundation of China(Grant No.3212010)Beijing Municipal Youth Backbone Personal Project of China(Grant No.2017000020124 G018).
文摘The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.
基金the National Natural Science Foundation of China(Grant No.62062001)Ningxia Youth Top Talent Project(2021).
文摘In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values.
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金funded by Anhui Provincial Natural Science Foundation(No.2208085ME128)the Anhui University-Level Special Project of Anhui University of Science and Technology(No.XCZX2021-01)+1 种基金the Research and the Development Fund of the Institute of Environmental Friendly Materials and Occupational Health,Anhui University of Science and Technology(No.ALW2022YF06)Anhui Province New Era Education Quality Project(Graduate Education)(No.2022xscx073).
文摘The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03020002)the National Natural Science Foundation of China(Nos.12205085 and12125502)。
文摘Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.
基金National Natural Science Foundation of China under Grant No.52178114Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project No.2021-79。
文摘Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.
基金supported by theKorea Industrial Technology Association(KOITA)Grant Funded by the Korean government(MSIT)(No.KOITA-2023-3-003)supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-2020-0-01808)Supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)。
文摘The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(RS-2024-00405016)supported by“Cooperative Research Program for Agriculture Science and Technology Development(Project No.PJ01706703)”Rural Development Administration,Republic of Korea.The Inter-University Semiconductor Research Center and Institute of Engineering Research at Seoul National University provided research facilities for this work.
文摘Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies.