We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be...We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.展开更多
This paper proposes a soft direct-adaptation based bidirectional turbo equalizer for multiple-input multiple-output underwater acoustic communication systems. Soft, rather than hard, direct-adaptation based equalizer ...This paper proposes a soft direct-adaptation based bidirectional turbo equalizer for multiple-input multiple-output underwater acoustic communication systems. Soft, rather than hard, direct-adaptation based equalizer combined with the fast self-optimized least mean square algorithm is employed to achieve a faster convergence rate, and the second-order phase-locked loop is embedded into the equalizer to track the time-varying channel. Meanwhile, by utilizing a weighted linear combining scheme, the conventional soft direct-adaptation based equalizer is combined with the time-reversed soft direct-adaptation based equalizer to exploit bidirectional diversity and mitigate error propagation. Both the simulation and experimental results demonstrate that the soft direct-adaptation based bidirectional turbo equalizer outperforms the single-direction soft direct-adaptation based turbo equalizer, and achieves a faster convergence rate than the hard direct-adaptation based bidirectional turbo equalizer.展开更多
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented...Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process.展开更多
Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information w...Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.展开更多
An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then...An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then the bidirectional accumulator Hough Transform was developed to extract weld edges from the ternary image. Different values of the coefficient proposed in the threshold algorithm were tested, and the proposed approach was applied to extract welds from real-time radiographic images of different types of welds with defects. Results show that the proposed method is adaptive and effective to extract welds from real-time radiographs of linear welds.展开更多
With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capac...With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.展开更多
In this paper, a novel Medium Access Control (MAC) protocol for industrial Wireless Local Area Networks (WLANs) is proposed and studied. The main challenge in industry automation systems is the ultra-low network laten...In this paper, a novel Medium Access Control (MAC) protocol for industrial Wireless Local Area Networks (WLANs) is proposed and studied. The main challenge in industry automation systems is the ultra-low network latency with a target upper bound in the order of 1 ms while maintaining high network reliability and availability. The novelty of the proposed wireless MAC protocol resides in its similar latency performance as its counterpart in wired industrial LAN. First, the functional design of the MAC protocol is introduced. Then its performance results gained from hardware implementation (SystemC and VHDL) on an FPGA platform are presented. Finally, a real-time communication module which achieves the ultra-low latency required in industrial automation is described.展开更多
This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show...This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.展开更多
Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. ...Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.展开更多
Considering characteristic of mHealth communication and problems of existing methods, this paper presents a real-time communication method for mHealth based on extended XMPP protocol. The method can maintain the role ...Considering characteristic of mHealth communication and problems of existing methods, this paper presents a real-time communication method for mHealth based on extended XMPP protocol. The method can maintain the role status efficiently and reduce data latency during the communication process. Meanwhile, it can be extended flexibly to meet increasing communication demands of mHealth services. Furthermore, a system framework is presented to support telemonitoring scene. Finally, system implementation and feasibility tests verify the effectiveness of the method and framework.展开更多
By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on b...By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.展开更多
In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock lo...In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock loop(OPLL).Based on the scheme,a real-time sensitivity of-49 dBm is achieved at 5 Gbps QPSK.Because DAC is not needed at the transmitter,as well as OPLL at the receiver,this reduces the system cost.Furthermore,the least required Rx ADC bit-width is also discussed.Through theoretical analysis and experimental results,our cost-effective transceiver satisfies the scenario and could be a promising component for future application.展开更多
6G IoT networks aim for providing significantly higher data rates and extremely lower latency.However,due to the increasingly scarce spectrum bands and ever-growing massive number IoT devices(IoDs)deployed,6G IoT netw...6G IoT networks aim for providing significantly higher data rates and extremely lower latency.However,due to the increasingly scarce spectrum bands and ever-growing massive number IoT devices(IoDs)deployed,6G IoT networks face two critical challenges,i.e.,energy limitation and severe signal attenuation.Simultaneous wireless information and power transfer(SWIPT)and cooperative relaying provide effective ways to address these two challenges.In this paper,we investigate the energy self-sustainability(ESS)of 6G IoT network and propose an OFDM based bidirectional multi-relay SWIPT strategy for 6G IoT networks.In the proposed strategy,the transmission process is equally divided into two phases.Specifically,in phase1 two source nodes transmit their signals to relay nodes which will then use different subcarrier sets to decode information and harvest energy,respectively.In phase2 relay nodes forward signals to corresponding destination nodes with the harvested energy.We maximize the weighted sum transmission rate by optimizing subcarriers and power allocation.Our proposed strategy achieves larger weighted sum transmission rate comparing with the benchmark scheme.展开更多
Present a kind of method which is used to communicate between serial serial port and peripheral equipment dynamicly and real-time using multithreading technique based on the basic principle of communication and multit...Present a kind of method which is used to communicate between serial serial port and peripheral equipment dynamicly and real-time using multithreading technique based on the basic principle of communication and multitasking mechanism in the circumstance of Windows. This method resolves the question of Real-time answering in the serial communication validly, reduces losing rate of data and improves reliability of system. This article presents a general method used in the serial communication which is practical.展开更多
Subsurface mooring allows researchers to measure the ocean properties such as water temperature,salinity,and velocity at several depths of the water column for a long period.Traditional subsurface mooring can release ...Subsurface mooring allows researchers to measure the ocean properties such as water temperature,salinity,and velocity at several depths of the water column for a long period.Traditional subsurface mooring can release data only after recovered,which constrains the usage of the subsurface and deep layer data in the ocean and climate predictions.Recently,we developed a new real-time subsurface mooring(RTSM).Velocity profiles over upper 1000 m depth and layered data from sensors up to 5000 m depth can be realtime transmitted to the small surface buoy through underwater acoustic communication and then to the office through Beidou or Iridium satellite.To verify and refine their design and data transmission process,we deployed more than 30 sets of RTSMs in the western Pacific to do a 1-year continuous run during 2016–2018.The continuous running period of RTSM in a 1-year cycle can reach more than 260 days on average,and more than 95%of observed data can be successfully transmitted back to the office.Compared to the widely-used inductive coupling communication,wireless acoustic communication has been shown more applicable to the underwater sensor network with large depth intervals and long transmission distance to the surface.展开更多
With the increasing attention to front-edge vehicular communication applications,distributed resource allocation is beneficial to the direct communications between vehicle nodes.However,in highly dynamic distributed v...With the increasing attention to front-edge vehicular communication applications,distributed resource allocation is beneficial to the direct communications between vehicle nodes.However,in highly dynamic distributed vehicular networks,quality of service(QoS)of the systems would degrade dramatically because of serious packet collisions in the absence of sufficient link knowledge.Focusing on the fairness optimization,a Q-learning-based collision avoidance(QCA)scheme,which is characterized by an ingenious bidirectional backoff reward model RQCA corresponding to arbitrary backoff stage transitions,has been proposed in an intelligent distributed media access control protocol.In QCA,an intelligent bidirectional backoff agent based on the Markov decision process model can actively motivate each vehicle agent to update itself toward an optimal backoff sub-intervel BSIopt through either positive or negative bidirectional transition individually,resulting in the distinct fair communication with a proper balance of the resource allocation.According to the reinforcement learning theory,the problem of goodness evaluation on the backoff stage self-selection policy is equal to the problem of maximizing Q function of the vehicle in the current environment.The final decision on BSI_(opt) related to an optimal contention window range was solved through maximizing the Q value or Q_(max).The ε-greedy algorithm was used to keep a reasonable convergence of the Q_(max) solution.For the fairness evaluation of QCA,four kinds of dynamic impacts on the vehicular networks were investigated:mobility,density,payload size,and data rate with a network simulator NS2.Consequently,QCA can achieve fair communication efficiently and robustly,with advantages of superior Jain’s fairness index,relatively high packet delivery ratio,and low time delay.展开更多
In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability...In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability of transportation. In this paper, a novel routing protocols named balance energy-efficient and real-time with reliable communication (BERR) for wireless sensor networks (WSNs) are proposed, which considers the joint performances of real-time, energy efficiency and reliability. In BERR, a node, which is preparing to transmit data packets to sink node, estimates the energy cost, hop count value to sink node and reliability using local information gained from neighbor nodes. BERR considers not only each sender' energy level but also that of its neighbor nodes, so that the better energy conditions a node has, the more probability it will be to be chosen as the next relay node. To enhance real-time delivery, it will choose the node with smaller hop count value to sink node as the possible relay candidate. To improve reliability, it adopts retransmission mechanism. Simulation results show that BERR has better performances in term of energy consumption, network lifetime, reliability and small transmitting delay.展开更多
Tampering,forgery and theft of the measurement and control messages in a smart grid could cause one breakdown in the power system.However,no security measures are employed for communications in intelligent substations...Tampering,forgery and theft of the measurement and control messages in a smart grid could cause one breakdown in the power system.However,no security measures are employed for communications in intelligent substations.Communication services in an intelligent substation have high demands for real-time performance,which must be considered when deploying security measures.This paper studies the security requirements of communication services in intelligent substations,analyzes the security capabilities and shortages of IEC 62351,and proposes a novel security scheme for intelligent substation communications.This security scheme covers internal and telecontrol communications,in which the real-time performance of each security measure is considered.In this scheme,certificateless public key cryptography(CLPKC)is used to avoid the latency of certificate exchange in certificate-based cryptosystem and the problem of key escrow in identity-based cryptosystem;the security measures of generic object-oriented substation event,sampled measure value and manufacturing message specification in IEC 62351 are improved to meet the real-time requirements of the messages as well as to provide new security features to resist repudiation and replay attacks;and the security at transport layer is modified to fit CLPKC,which implements mutual authentication by exchanging signatures.Furthermore,a deployment of CLPKC in an intelligent substation is presented.We also evaluate the security properties of the scheme and analyze the end-to-end delays of secured services by combining theoretical calculation and simulation in this paper.The results indicate that the proposed scheme meets the requirements of security and real-time performance of communications in intelligent substations.展开更多
We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulat...We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office(CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed.This is the first demonstration, to our knowledge, of a >20 Gbit∕s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.展开更多
A direct-adaptation based bidirectional turbo equalizer for underwater acoustic communications is proposed.Abandoning the channel estimation process,the direct-adaptation based turbo equalizer embedded with digital ph...A direct-adaptation based bidirectional turbo equalizer for underwater acoustic communications is proposed.Abandoning the channel estimation process,the direct-adaptation based turbo equalizer embedded with digital phase-locked loop is adopted to track time-varying channel.The fast self-optimized algorithm is used to adjust the step size,thus a good tradeoff between the convergence speed and performance has been made.Furthermore,by minimizing the mean squared error,an optimal weighting factor is derived to exploit bidirectional diversity gain.The forward turbo equalizer is combined with the backward turbo equalizer to eliminate error propagation effect.Simulated and experimental results demonstrate that the bidirectional turbo equalizer outperforms the single directional one.It can be seen from the experimental results that,compared with the channel estimation based algorithm,the direct-adaptation based algorithm is less sensitive to the time-varying channel and has a lower bit error rate.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Provincial Universities under Grant No.10KJB180004the National Natural Science Foundation of China under Grant No.11105075
文摘We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.
基金the Key Project "Theory and technologies of data acquisition and reliable transmission for mobile underwater sensor node" supported by National Natural Science Foundation of China (No. 61431020)
文摘This paper proposes a soft direct-adaptation based bidirectional turbo equalizer for multiple-input multiple-output underwater acoustic communication systems. Soft, rather than hard, direct-adaptation based equalizer combined with the fast self-optimized least mean square algorithm is employed to achieve a faster convergence rate, and the second-order phase-locked loop is embedded into the equalizer to track the time-varying channel. Meanwhile, by utilizing a weighted linear combining scheme, the conventional soft direct-adaptation based equalizer is combined with the time-reversed soft direct-adaptation based equalizer to exploit bidirectional diversity and mitigate error propagation. Both the simulation and experimental results demonstrate that the soft direct-adaptation based bidirectional turbo equalizer outperforms the single-direction soft direct-adaptation based turbo equalizer, and achieves a faster convergence rate than the hard direct-adaptation based bidirectional turbo equalizer.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 52074258, 41941018, and U21A20153)
文摘Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process.
基金Acknowledgements The work was supported by National Natural Science Foundation of China (Grant No.60972008). The corresponding author is Jiang Wei.
文摘Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.
文摘An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then the bidirectional accumulator Hough Transform was developed to extract weld edges from the ternary image. Different values of the coefficient proposed in the threshold algorithm were tested, and the proposed approach was applied to extract welds from real-time radiographic images of different types of welds with defects. Results show that the proposed method is adaptive and effective to extract welds from real-time radiographs of linear welds.
文摘With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.
基金funding from the German Federal Ministry for Education and Research(2015-2017)under the grant agreement No.16KIS0179 also referred as DEAL
文摘In this paper, a novel Medium Access Control (MAC) protocol for industrial Wireless Local Area Networks (WLANs) is proposed and studied. The main challenge in industry automation systems is the ultra-low network latency with a target upper bound in the order of 1 ms while maintaining high network reliability and availability. The novelty of the proposed wireless MAC protocol resides in its similar latency performance as its counterpart in wired industrial LAN. First, the functional design of the MAC protocol is introduced. Then its performance results gained from hardware implementation (SystemC and VHDL) on an FPGA platform are presented. Finally, a real-time communication module which achieves the ultra-low latency required in industrial automation is described.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60577019 and 60777041)the International Cooperation Project of Shanxi Province,China (Grant No. 2007081019)
文摘This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.
文摘Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.
文摘Considering characteristic of mHealth communication and problems of existing methods, this paper presents a real-time communication method for mHealth based on extended XMPP protocol. The method can maintain the role status efficiently and reduce data latency during the communication process. Meanwhile, it can be extended flexibly to meet increasing communication demands of mHealth services. Furthermore, a system framework is presented to support telemonitoring scene. Finally, system implementation and feasibility tests verify the effectiveness of the method and framework.
基金Supported by the Emphases Science and Technology Project Foundation of Sichuan Province(NO.02GG006-037)
文摘By thorough research on the prominent periodic and aperiodic scheduling algorithms,anon-line hard real-time scheduler is presented,which is applicable to the scheduling of packets over a link.This scheduler,based on both Rate Monotonic,pinwheel scheduling algorithm Sr and Polling Serverscheduling algorithms,can rapidly judge the schedulability and then automatically generate a bus tablefor the scheduling algorithm to schedule the packets as the periodic packets.The implementation of thescheduler is simple and easy to use,and it is effective for the utilization of bus link.The orderly executionof the bus table can not only guarantee the performance of the hard real time but also avoid the blockageand interruption of the message transmission.So the scheduler perfectly meets the demand of hard real-time communication system on the field bus domain.
基金supported in part by the National Key Research and Development Program of China(No.2021YFB2900800)the Science and Technology Commission of Shanghai Municipality(Nos.22511100902,22511100502,20511102400,and 20ZR1420900)the 111 Project(No.D20031)。
文摘In this paper,we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication,without digital-to-analog converter(DAC)devices and an optical phase lock loop(OPLL).Based on the scheme,a real-time sensitivity of-49 dBm is achieved at 5 Gbps QPSK.Because DAC is not needed at the transmitter,as well as OPLL at the receiver,this reduces the system cost.Furthermore,the least required Rx ADC bit-width is also discussed.Through theoretical analysis and experimental results,our cost-effective transceiver satisfies the scenario and could be a promising component for future application.
基金This work was supported by China National Science Foundation under Grant No.61871348by University Key Laboratory of Advanced Wireless Communications of Guangdong Province,by the Project funded by China Postdoctoral Science Foundation under Grant 2019T120531+1 种基金by the Science and Technology Development Fund,Macao,China under Grant 0162/2019/A3by the Fundamental Research Funds for the Provincial Universities of Zhejiang under Grant RFA2019001.
文摘6G IoT networks aim for providing significantly higher data rates and extremely lower latency.However,due to the increasingly scarce spectrum bands and ever-growing massive number IoT devices(IoDs)deployed,6G IoT networks face two critical challenges,i.e.,energy limitation and severe signal attenuation.Simultaneous wireless information and power transfer(SWIPT)and cooperative relaying provide effective ways to address these two challenges.In this paper,we investigate the energy self-sustainability(ESS)of 6G IoT network and propose an OFDM based bidirectional multi-relay SWIPT strategy for 6G IoT networks.In the proposed strategy,the transmission process is equally divided into two phases.Specifically,in phase1 two source nodes transmit their signals to relay nodes which will then use different subcarrier sets to decode information and harvest energy,respectively.In phase2 relay nodes forward signals to corresponding destination nodes with the harvested energy.We maximize the weighted sum transmission rate by optimizing subcarriers and power allocation.Our proposed strategy achieves larger weighted sum transmission rate comparing with the benchmark scheme.
文摘Present a kind of method which is used to communicate between serial serial port and peripheral equipment dynamicly and real-time using multithreading technique based on the basic principle of communication and multitasking mechanism in the circumstance of Windows. This method resolves the question of Real-time answering in the serial communication validly, reduces losing rate of data and improves reliability of system. This article presents a general method used in the serial communication which is practical.
基金the Wenhai Program(No.SQ2017WHZZB0502)the Scientific and Technological Innovation Project(Nos.2016ASKJ12,2017ASKJ01)+2 种基金the Marine S&T Fund of Shandong Province(No.2018SDKJ0101)of Pilot National Laboratory for Marine Science and Technology(Qingdao)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Nos.YJKYYQ20170038,YJKYYQ20180057)the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-01-01)。
文摘Subsurface mooring allows researchers to measure the ocean properties such as water temperature,salinity,and velocity at several depths of the water column for a long period.Traditional subsurface mooring can release data only after recovered,which constrains the usage of the subsurface and deep layer data in the ocean and climate predictions.Recently,we developed a new real-time subsurface mooring(RTSM).Velocity profiles over upper 1000 m depth and layered data from sensors up to 5000 m depth can be realtime transmitted to the small surface buoy through underwater acoustic communication and then to the office through Beidou or Iridium satellite.To verify and refine their design and data transmission process,we deployed more than 30 sets of RTSMs in the western Pacific to do a 1-year continuous run during 2016–2018.The continuous running period of RTSM in a 1-year cycle can reach more than 260 days on average,and more than 95%of observed data can be successfully transmitted back to the office.Compared to the widely-used inductive coupling communication,wireless acoustic communication has been shown more applicable to the underwater sensor network with large depth intervals and long transmission distance to the surface.
文摘With the increasing attention to front-edge vehicular communication applications,distributed resource allocation is beneficial to the direct communications between vehicle nodes.However,in highly dynamic distributed vehicular networks,quality of service(QoS)of the systems would degrade dramatically because of serious packet collisions in the absence of sufficient link knowledge.Focusing on the fairness optimization,a Q-learning-based collision avoidance(QCA)scheme,which is characterized by an ingenious bidirectional backoff reward model RQCA corresponding to arbitrary backoff stage transitions,has been proposed in an intelligent distributed media access control protocol.In QCA,an intelligent bidirectional backoff agent based on the Markov decision process model can actively motivate each vehicle agent to update itself toward an optimal backoff sub-intervel BSIopt through either positive or negative bidirectional transition individually,resulting in the distinct fair communication with a proper balance of the resource allocation.According to the reinforcement learning theory,the problem of goodness evaluation on the backoff stage self-selection policy is equal to the problem of maximizing Q function of the vehicle in the current environment.The final decision on BSI_(opt) related to an optimal contention window range was solved through maximizing the Q value or Q_(max).The ε-greedy algorithm was used to keep a reasonable convergence of the Q_(max) solution.For the fairness evaluation of QCA,four kinds of dynamic impacts on the vehicular networks were investigated:mobility,density,payload size,and data rate with a network simulator NS2.Consequently,QCA can achieve fair communication efficiently and robustly,with advantages of superior Jain’s fairness index,relatively high packet delivery ratio,and low time delay.
基金supported by the National Natural Science Foundation of China (61104033, 61174127, 60934003)the Hebei Provincial Natural Science Fund (F2012203109, F2012203126)
文摘In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability of transportation. In this paper, a novel routing protocols named balance energy-efficient and real-time with reliable communication (BERR) for wireless sensor networks (WSNs) are proposed, which considers the joint performances of real-time, energy efficiency and reliability. In BERR, a node, which is preparing to transmit data packets to sink node, estimates the energy cost, hop count value to sink node and reliability using local information gained from neighbor nodes. BERR considers not only each sender' energy level but also that of its neighbor nodes, so that the better energy conditions a node has, the more probability it will be to be chosen as the next relay node. To enhance real-time delivery, it will choose the node with smaller hop count value to sink node as the possible relay candidate. To improve reliability, it adopts retransmission mechanism. Simulation results show that BERR has better performances in term of energy consumption, network lifetime, reliability and small transmitting delay.
基金supported by the National Key Research and Development Program of China(No.2017YFB0903000)the National Natural Science Foundation of China(No.51377122)the project of State Grid Corporation of China(Research on Cooperative Situation Awareness and Active Defense Method of Cyber Physical Power System for Cyber Attack).
文摘Tampering,forgery and theft of the measurement and control messages in a smart grid could cause one breakdown in the power system.However,no security measures are employed for communications in intelligent substations.Communication services in an intelligent substation have high demands for real-time performance,which must be considered when deploying security measures.This paper studies the security requirements of communication services in intelligent substations,analyzes the security capabilities and shortages of IEC 62351,and proposes a novel security scheme for intelligent substation communications.This security scheme covers internal and telecontrol communications,in which the real-time performance of each security measure is considered.In this scheme,certificateless public key cryptography(CLPKC)is used to avoid the latency of certificate exchange in certificate-based cryptosystem and the problem of key escrow in identity-based cryptosystem;the security measures of generic object-oriented substation event,sampled measure value and manufacturing message specification in IEC 62351 are improved to meet the real-time requirements of the messages as well as to provide new security features to resist repudiation and replay attacks;and the security at transport layer is modified to fit CLPKC,which implements mutual authentication by exchanging signatures.Furthermore,a deployment of CLPKC in an intelligent substation is presented.We also evaluate the security properties of the scheme and analyze the end-to-end delays of secured services by combining theoretical calculation and simulation in this paper.The results indicate that the proposed scheme meets the requirements of security and real-time performance of communications in intelligent substations.
基金Ministry of Science and Technology,Taiwan(MOST)(MOST-106-2221-E-009-105-MY3)Aim for the Top University PlanMinistry of Education(MOE),Taiwan,China
文摘We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office(CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed.This is the first demonstration, to our knowledge, of a >20 Gbit∕s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.
基金supported by the National Natural Science Foundation of China(61431020)
文摘A direct-adaptation based bidirectional turbo equalizer for underwater acoustic communications is proposed.Abandoning the channel estimation process,the direct-adaptation based turbo equalizer embedded with digital phase-locked loop is adopted to track time-varying channel.The fast self-optimized algorithm is used to adjust the step size,thus a good tradeoff between the convergence speed and performance has been made.Furthermore,by minimizing the mean squared error,an optimal weighting factor is derived to exploit bidirectional diversity gain.The forward turbo equalizer is combined with the backward turbo equalizer to eliminate error propagation effect.Simulated and experimental results demonstrate that the bidirectional turbo equalizer outperforms the single directional one.It can be seen from the experimental results that,compared with the channel estimation based algorithm,the direct-adaptation based algorithm is less sensitive to the time-varying channel and has a lower bit error rate.