In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw wea...In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering.展开更多
The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters wh...The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters which are combined to control the course is studied. Firstly, Euler angles representation and quaternion method are applied to establish six-DOF kinematic model respectively, then Newton second law and Lagrangian approach are used to deduce the vectored thruster AUV’s nonlinear dynamic equations with six degrees of freedom (DOF) respectively in complex sea conditions based on the random wave theory according to the structural and kinetic characteristics of the vectored thruster AUV in this paper. The kinematic models and dynamic models based on different theories have the same expression and conclusion, which shows that the kinematic models and dynamic models of the vectored thruster AUV are accurate. The Runge-Kutta arithmetic is used to solve the dynamic equations, which not only can simulate the motions such as cruise and hover but also can describe the vehicle’s low-frequency and high-frequency motion. The results of computation show that the mobility of the vectored thruster AUV in interference-free environment and the integrated signals including low-frequency motion signal and high-frequency motion signal in environmental disturbance accord with practical situation, which not only solve the problem of especial singularities when the pitch angle θ = ±90° but also clears up the difficulties of computation and display of the coupled nonlinear motion equations in complex sea conditions. Moreover, the high maneuverability of the vectored thruster AUV equipped with rudders and vectored thrusters is validated, which lays a foundation for the control system design.展开更多
Marine oil spills have caused major threats to marine environment over the past few years.The early detection of the oil spill is of great significance for the prevention and control of marine disasters.At present,rem...Marine oil spills have caused major threats to marine environment over the past few years.The early detection of the oil spill is of great significance for the prevention and control of marine disasters.At present,remote sensing is one of the major approaches for monitoring the oil spill.Full polarization synthetic aperture radarc SAR data are employed to extract polarization decomposition parameters including entropy(H) and reflection entropy(A).The characteristic spectrum of the entropy and reflection entropy combination has analyzed and the polarization characteristic spectrum of the oil spill has developed to support remote sensing of the oil spill.The findings show that the information extracted from(1-A)×(1-H) and(1-H)×A parameters is relatively evident effects.The results of extraction of the oil spill information based on H×A parameter are relatively not good.The combination of the two has something to do with H and A values.In general,when H〉0.7,A value is relatively small.Here,the extraction of the oil spill information using(1-A)×(1-H) and(1-H)×A parameters obtains evident effects.Whichever combined parameter is adopted,oil well data would cause certain false alarm to the extraction of the oil spill information.In particular the false alarm of the extracted oil spill information based on(1-A)×(1-H) is relatively high,while the false alarm based on(1-A)×H and(1-H)×A parameters is relatively small,but an image noise is relatively big.The oil spill detection employing polarization characteristic spectrum support vector machine can effectively identify the oil spill information with more accuracy than that of the detection method based on single polarization feature.展开更多
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
The distribution of precipitation field from the typhoon Haitang(2005) during its landing on Fujian province shows obvious asymmetric feature.Based on the NCEP/NCAR FNL(Final Analysis) data,this study reveals the cont...The distribution of precipitation field from the typhoon Haitang(2005) during its landing on Fujian province shows obvious asymmetric feature.Based on the NCEP/NCAR FNL(Final Analysis) data,this study reveals the contributions of atmospheric factor to the asymmetrical distribution characteristics of precipitation associated with the typhoon,through the analysis of water vapor condition,vertical ascending motion condition,the calculation of the dry Q vector and its decomposition,and adiabatic heating in the air column of 1000hPa-600hPa(lower atmosphere) and500hPa-100hPa(upper atmosphere).The results are as follows:(1) In the lower atmosphere,the humidity on both sides of typhoon path can be equivalent,while it is more wet on the right side than left in the upper atmosphere,which obviously presents asymmetric distribution characteristics.(2) Both range and intensity of the vertical motion on the right side are wider and stronger than counterparts on the left side no matter in the lower or upper atmosphere.(3) In the upper atmosphere,forcing role of atmosphere in vertical upward motion on the right side of typhoon path is the same as that on the left,while it is significantly different in the lower atmosphere,which is significantly broader in scope and stronger in the intensity,along with obvious asymmetric distribution characteristics.In addition,the further analysis of the Q vector decomposition indicates that the forcing effect of mesoscale weather systems on vertical upward motion is stronger than that of large scale weather systems in the lower atmosphere.(4) The adiabatic heating always exists on both lower and upper atmosphere,and the range and intensity of the adiabatic heating forcing showed asymmetric distribution on both lower and upper atmosphere.(5) In a summary,the upper atmosphere humidity conditions,the forcing role of lower atmosphere in vertical upward motion,especially,to mesoscale weather system,and adiabatic heating in the lower atmosphere,all show similar asymmetric distribution characteristics to that of precipitation field from the typhoon Haitang(2005),that is to say,the atmospheric factors as mentioned above are all contributed to genesis of the asymmetric distribution characteristics of precipitation.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
Objective To construct reference standards for detection and quantification of Klebsiella pneumoniae(K.pneumoniae)with SYBR Green I-based real-time PCR assay.Methods Primers were designed based on the published sequen...Objective To construct reference standards for detection and quantification of Klebsiella pneumoniae(K.pneumoniae)with SYBR Green I-based real-time PCR assay.Methods Primers were designed based on the published sequence of the phoE gene of K.pneumoniae.The standard was prepared by cell culture,PCR and T-A clone methods,and was identified by colony PCR and DNA sequencing.Results The standard curve showed a very good linear negative regression between threshold cycle(Ct)and Log starting quantity of copy number.The detection range was from 5.2 to 5.2×106 copies per reaction,and the detection limit was 6 copies per reaction.The coefficients of variance(CVs)of three parallel experiments were in the range of 0.05%-0.91%.Conclusion The reference standards have high stability and reproducibility.They can be used in the quantitative detection of K.pneumoniae.展开更多
From the Gauss-Bonnet-Chern theorem, the Euler characteristic of NUT-Kerr-Newman black hole is calculated to be some discrete numbers from 0 to 2. We find that the Bekenstein-Hawking entropy is the largest entropy in ...From the Gauss-Bonnet-Chern theorem, the Euler characteristic of NUT-Kerr-Newman black hole is calculated to be some discrete numbers from 0 to 2. We find that the Bekenstein-Hawking entropy is the largest entropy in topology by taking into account of the relationship between the entropy and the Euler characteristic. The NUT-Kerr- Newman black hole evolves from the torus-like topological structure to the spherical structure with the changes of mass, angular momentum, electric and NUT charges. In this process, the Euler characteristic and the entropy are changed discontinuously, which give the topological aspect of the first-order phase transition of NUT-Kerr-Newman black hole. The corresponding latent heat of the topological phase transition is also obtained. The estimated latent heat of the black hole evolving from the star just lies in the range of the energy of gamma ray bursts.展开更多
With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in an...With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd展开更多
GPS observation network is deployed in the central part of Ningxia, which is the juncture of the Alxa block, Ordos block and Qinghai-Xizang (Tibet) block. Using the data of five phases of repeated survey sine 1996, th...GPS observation network is deployed in the central part of Ningxia, which is the juncture of the Alxa block, Ordos block and Qinghai-Xizang (Tibet) block. Using the data of five phases of repeated survey sine 1996, the current state of crustal movement in the central part of Ningxia is analyzed. From the result, we can know the following. (1) In the period from Dec. 1996 to May 1999, the central part of Ningxia had the phenomenon of left-lateral movement about the west margin of Ordos (measuring station P2) and the Lingwu fault on the east of the Yinchuan basin displayed the mode of left-lateral reverse strike slip movement. In that region, the direction of the principal stress field was NNE-SSW (with an azimuth of 29.8?; the central part to the south of the measuring station P2 displaced eastward; the vertical deformation was obviously greater than the horizontal deformation in order of magnitude; the Yinchuan basin and Qinghai-Xizang (Tibet) block were in a state of rising; the measuring station P1 in the hinterland of Ordos showed a trend of subsiding year by year; and there may be a hidden fault to exist between the measuring points P3 and P4. (2) About one year before the occurrence of moderately strong earthquakes in the vicinity of the measuring region, deformation anomalies and abnormal changes of principal stress direction can be observed by the GPS measuring stations in that region; before moderately strong earthquakes near the measuring region and before strong earthquakes in adjacent regions, the simulated GPS deformation vector field ofthat region can betoken the approximate position of the coming earthquake. These results can be regarded as the eigenvalues of earthquake prediction for consideration.展开更多
To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatic...To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.展开更多
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource effic...Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.展开更多
The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting...The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.展开更多
In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (R...In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (RNAi) effect is analyzed by a support vector machine (SVM) based algorithm relied on a basebase correlation (BBC) feature. The results show that the proposed algorithm has the highest area under curve (AUC) value (0. 73) of the receive operating characteristic (ROC) curve and the greatest r value (0. 43) of the Pearson's correlation coefficient. This indicates that the proposed algorithm is better than the published algorithms on the collected datasets and that more attention should be paid to the base-base correlation information in future siRNA design.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42072309)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217).
文摘In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2006AA09Z235)Hunan Provincial Innovation Foundation For Postgraduate of China(Grant No. CX2009B003)
文摘The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters which are combined to control the course is studied. Firstly, Euler angles representation and quaternion method are applied to establish six-DOF kinematic model respectively, then Newton second law and Lagrangian approach are used to deduce the vectored thruster AUV’s nonlinear dynamic equations with six degrees of freedom (DOF) respectively in complex sea conditions based on the random wave theory according to the structural and kinetic characteristics of the vectored thruster AUV in this paper. The kinematic models and dynamic models based on different theories have the same expression and conclusion, which shows that the kinematic models and dynamic models of the vectored thruster AUV are accurate. The Runge-Kutta arithmetic is used to solve the dynamic equations, which not only can simulate the motions such as cruise and hover but also can describe the vehicle’s low-frequency and high-frequency motion. The results of computation show that the mobility of the vectored thruster AUV in interference-free environment and the integrated signals including low-frequency motion signal and high-frequency motion signal in environmental disturbance accord with practical situation, which not only solve the problem of especial singularities when the pitch angle θ = ±90° but also clears up the difficulties of computation and display of the coupled nonlinear motion equations in complex sea conditions. Moreover, the high maneuverability of the vectored thruster AUV equipped with rudders and vectored thrusters is validated, which lays a foundation for the control system design.
基金The National Natural Science Foundation of China under contract No.41376183the Oceanography Public Welfare Scientific Research Project "Marine oil spill risk assessment and key technologies of emergency response integration and demonstration" under contract No.201205012
文摘Marine oil spills have caused major threats to marine environment over the past few years.The early detection of the oil spill is of great significance for the prevention and control of marine disasters.At present,remote sensing is one of the major approaches for monitoring the oil spill.Full polarization synthetic aperture radarc SAR data are employed to extract polarization decomposition parameters including entropy(H) and reflection entropy(A).The characteristic spectrum of the entropy and reflection entropy combination has analyzed and the polarization characteristic spectrum of the oil spill has developed to support remote sensing of the oil spill.The findings show that the information extracted from(1-A)×(1-H) and(1-H)×A parameters is relatively evident effects.The results of extraction of the oil spill information based on H×A parameter are relatively not good.The combination of the two has something to do with H and A values.In general,when H〉0.7,A value is relatively small.Here,the extraction of the oil spill information using(1-A)×(1-H) and(1-H)×A parameters obtains evident effects.Whichever combined parameter is adopted,oil well data would cause certain false alarm to the extraction of the oil spill information.In particular the false alarm of the extracted oil spill information based on(1-A)×(1-H) is relatively high,while the false alarm based on(1-A)×H and(1-H)×A parameters is relatively small,but an image noise is relatively big.The oil spill detection employing polarization characteristic spectrum support vector machine can effectively identify the oil spill information with more accuracy than that of the detection method based on single polarization feature.
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
基金National Natural Science Foundation of China(40875025,41175050,41275021,41475039,41475041,41575048)Public Sector(Meteorology)Research of China(GYHY201306012,GYHY201506007)
文摘The distribution of precipitation field from the typhoon Haitang(2005) during its landing on Fujian province shows obvious asymmetric feature.Based on the NCEP/NCAR FNL(Final Analysis) data,this study reveals the contributions of atmospheric factor to the asymmetrical distribution characteristics of precipitation associated with the typhoon,through the analysis of water vapor condition,vertical ascending motion condition,the calculation of the dry Q vector and its decomposition,and adiabatic heating in the air column of 1000hPa-600hPa(lower atmosphere) and500hPa-100hPa(upper atmosphere).The results are as follows:(1) In the lower atmosphere,the humidity on both sides of typhoon path can be equivalent,while it is more wet on the right side than left in the upper atmosphere,which obviously presents asymmetric distribution characteristics.(2) Both range and intensity of the vertical motion on the right side are wider and stronger than counterparts on the left side no matter in the lower or upper atmosphere.(3) In the upper atmosphere,forcing role of atmosphere in vertical upward motion on the right side of typhoon path is the same as that on the left,while it is significantly different in the lower atmosphere,which is significantly broader in scope and stronger in the intensity,along with obvious asymmetric distribution characteristics.In addition,the further analysis of the Q vector decomposition indicates that the forcing effect of mesoscale weather systems on vertical upward motion is stronger than that of large scale weather systems in the lower atmosphere.(4) The adiabatic heating always exists on both lower and upper atmosphere,and the range and intensity of the adiabatic heating forcing showed asymmetric distribution on both lower and upper atmosphere.(5) In a summary,the upper atmosphere humidity conditions,the forcing role of lower atmosphere in vertical upward motion,especially,to mesoscale weather system,and adiabatic heating in the lower atmosphere,all show similar asymmetric distribution characteristics to that of precipitation field from the typhoon Haitang(2005),that is to say,the atmospheric factors as mentioned above are all contributed to genesis of the asymmetric distribution characteristics of precipitation.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
基金supported by the National High Technology Research and Development Program of China(863Program,No.2006AA06Z408)
文摘Objective To construct reference standards for detection and quantification of Klebsiella pneumoniae(K.pneumoniae)with SYBR Green I-based real-time PCR assay.Methods Primers were designed based on the published sequence of the phoE gene of K.pneumoniae.The standard was prepared by cell culture,PCR and T-A clone methods,and was identified by colony PCR and DNA sequencing.Results The standard curve showed a very good linear negative regression between threshold cycle(Ct)and Log starting quantity of copy number.The detection range was from 5.2 to 5.2×106 copies per reaction,and the detection limit was 6 copies per reaction.The coefficients of variance(CVs)of three parallel experiments were in the range of 0.05%-0.91%.Conclusion The reference standards have high stability and reproducibility.They can be used in the quantitative detection of K.pneumoniae.
基金The project supported in part by National Natural Science Foundation of China under Grant No.10575068the Natural Science Foundation of Shanghai Municipal Committee of Science and Technology under Grant Nos.04ZR14059 and 04DZ05905+1 种基金Shanghai Education Development Foundation under Grant No 214675Shanghai Leading Academic Discipline Project under Grant No.T0104
文摘From the Gauss-Bonnet-Chern theorem, the Euler characteristic of NUT-Kerr-Newman black hole is calculated to be some discrete numbers from 0 to 2. We find that the Bekenstein-Hawking entropy is the largest entropy in topology by taking into account of the relationship between the entropy and the Euler characteristic. The NUT-Kerr- Newman black hole evolves from the torus-like topological structure to the spherical structure with the changes of mass, angular momentum, electric and NUT charges. In this process, the Euler characteristic and the entropy are changed discontinuously, which give the topological aspect of the first-order phase transition of NUT-Kerr-Newman black hole. The corresponding latent heat of the topological phase transition is also obtained. The estimated latent heat of the black hole evolving from the star just lies in the range of the energy of gamma ray bursts.
基金partly supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China (Grant No. 2009AA01Z220)+3 种基金the Key Grant of the Chinese Ministry of Education (Grant No. 109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education,China (Grant No. YB20081001301)the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications),Chinese Ministry of Educationthe Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023)
文摘With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd
基金the Program of the Science and Technology Commission of Ningxia Hui Autonomous Region and Joint Foundation of Seismological Science(197043).
文摘GPS observation network is deployed in the central part of Ningxia, which is the juncture of the Alxa block, Ordos block and Qinghai-Xizang (Tibet) block. Using the data of five phases of repeated survey sine 1996, the current state of crustal movement in the central part of Ningxia is analyzed. From the result, we can know the following. (1) In the period from Dec. 1996 to May 1999, the central part of Ningxia had the phenomenon of left-lateral movement about the west margin of Ordos (measuring station P2) and the Lingwu fault on the east of the Yinchuan basin displayed the mode of left-lateral reverse strike slip movement. In that region, the direction of the principal stress field was NNE-SSW (with an azimuth of 29.8?; the central part to the south of the measuring station P2 displaced eastward; the vertical deformation was obviously greater than the horizontal deformation in order of magnitude; the Yinchuan basin and Qinghai-Xizang (Tibet) block were in a state of rising; the measuring station P1 in the hinterland of Ordos showed a trend of subsiding year by year; and there may be a hidden fault to exist between the measuring points P3 and P4. (2) About one year before the occurrence of moderately strong earthquakes in the vicinity of the measuring region, deformation anomalies and abnormal changes of principal stress direction can be observed by the GPS measuring stations in that region; before moderately strong earthquakes near the measuring region and before strong earthquakes in adjacent regions, the simulated GPS deformation vector field ofthat region can betoken the approximate position of the coming earthquake. These results can be regarded as the eigenvalues of earthquake prediction for consideration.
基金Supported by National Natural Science Foundation of China(Grant No.51675180)National Key Basic Research Program of China(973 Program,Grant No.2013CB037503)
文摘To improve the adaptability of TBMs in diverse geological environments,this paper proposes a reconfigurable Type-V thrust mechanism(V-TM)with rearrangeable working states,in which structural stiffness can be automatically altered during operation.Therefore,millions of configurations can be obtained,and thousands of instances of working status per configuration can be set respectively.Nonetheless,the complexity of configurations and diversity of working states contributes to further complications for the structural stiffness algorithm.This results in challenges such as difficulty calculating the payload compliance index and the environment adaptability index.To solve this problem,we use the configuration matrix to describe the relationship between propelling jacks under reconfiguration and adopt pattern vectors to describe the working state of each hydraulic cylinder.Then,both the dynamic compatible equation between propeller forces of the hydraulic cylinders and driving forces,and the kinematic harmonizing equation between the hydraulic cylinder displacements and their deformations are established.Next,we derive the stiffness analytical equation using Hooke’s law and the Jacobian Matrix.The proposed approach provides an effective algorithm to support structural rigidity analysis,and lays a solid theoretical foundation for calculating the performance indexes of the V-TM.We then analyze the rigidity characteristics of typical configurations under different working states,and obtain the main factors affecting structural stiffness of the V-TM.The results show the deviation degree of structural parameters in hydraulic cylinders within the same group,and the working status of propelling jacks.Finally,our constructive conclusions contribute valuable information for matching and optimization by drawing on the factors that affect the structural rigidity of the V-TM.
文摘Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
基金Ministry of Education,National Science and Technology Major Project of China(Nos.2017-V-0004-0054,2019-II-0007-0027,Y2022-II-0005-0008)Defense Industrial Technology Development Program of China(No.JCKY2019605D001)+4 种基金Advanced Jet Propulsion Creativity Center of AEAC of China(No.HKCX2020-02-011)China Postdoctoral Science Foundation(No.2022M721598),Jiangsu Funding Program for Excellent Postdoctoral Talent of China(No.2022ZB214)the Youth Fund Project of Natural Science Foundation of Jiangsu Province of China(No.BK20230891)the National Natural Science Foundation of China(No.12332018)Science Center for Gas Turbine Project,China(P2022-B-I-006-001)and some other related foundations.
文摘The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.
基金The National Natural Science Foundation of China(No60671018,60121101)
文摘In order to assist the design of short interfering ribonucleic acids (siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference (RNAi) effect is analyzed by a support vector machine (SVM) based algorithm relied on a basebase correlation (BBC) feature. The results show that the proposed algorithm has the highest area under curve (AUC) value (0. 73) of the receive operating characteristic (ROC) curve and the greatest r value (0. 43) of the Pearson's correlation coefficient. This indicates that the proposed algorithm is better than the published algorithms on the collected datasets and that more attention should be paid to the base-base correlation information in future siRNA design.