Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treati...Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treating migraines through the use of network pharmacology and a rat migraine model.Methods:After identifying the active components of Horcha-6,the corresponding genes of the active components’target were obtained from the Universal Protein database,and a“compound-target-disease”network was constructed using Cytoscape 3.9.0 software.For the in vivo experiments,nitroglycerin was injected intraperitoneally into rats to create a migraine model.Pre-treatment with Horcha-6 was administered orally for 14 days,and rats were subjected to migraine-related behavior tests.RNA sequencing was performed to identify the gene expression regulated by Horcha-6 in the trigeminal nerve.Results:A total of 903 chemical components of Horcha-6 have been collected in the liquid chromatography with tandem mass spectrometry.We discovered 55 of the Horcha-6 bio-active components that were evaluated based on their Percent Human Oral Absorption(≥30%)and DL values(≥0.185)on the traditional Chinese medicine systems pharmacology database.The“compound-target-disease”network contained 163 intersection targets with the migraine state.Gene Ontology analysis indicated that these components significantly regulated the immune response,vascular function,oxidative stress,etc.When Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed,we observed that most of the target genes were significantly enriched in the inflammation and neuro-related signaling pathway,toll-like receptor signaling pathway,neuroactive ligand-receptor interaction,etc.These predictions were further demonstrated via in vivo animal model experiments.The RNA sequencing results showed that 41 genes were down-regulated(P<0.05)and 86 genes were up-regulated(P<0.05)in the Horcha-6 treated group compared with the untreated group.Those genes were mainly involved in neuromodulation,vascular function,and hormone metabolism.Conclusion:The 55 bio-active components in Horcha-6 regulate inflammation,hormone metabolism,and neurotransmitters and have potential as a therapy to treat migraines.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f...The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.展开更多
Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requi...Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Reflective real-time component model is a special component model, which can identify timing constraint characteristics of component and support dynamic design-time amendment of real-time component according to users...Reflective real-time component model is a special component model, which can identify timing constraint characteristics of component and support dynamic design-time amendment of real-time component according to users' requirements. The reflective real-time component runtime environment is a bearing space and reflective infrastructure for this special component model. It consists of three parts and manages the lifecycle and various relevant services of reflective real-time component. In this paper its mechanism and relevant key techniques in design and realization are formally specified with the communicating sequential processing (CSP) and the extended timed communicating sequential processing (TCSP). Finally a prototype is established. Experimental study shows that this runtime environment can introduce a relevant reflective infrastructure guaranteeing dynamic and real-time features of software component.展开更多
Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide req...Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide requisite information for follow up designing segments such as structural analysis, design of technological process and manufacturing etc, and thereby lead to the reduction of product design period and the quality and reliability improvement of ICE components. So the developing situations of ICE components' 2 D drafting, 3 D modeling of ICE, overall CAD of ICE as well as component design expert system etc. are surveyed, which are the typical applications of computer aided modeling techniques in ICE component design process, and some existent problems and tasks are pointed out so as to make some references for the further research work.展开更多
A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to p...A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.展开更多
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient...Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.展开更多
Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and emb...Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software.展开更多
Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that t...Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.展开更多
The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehi...The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehicle dynamic model, in which only the lateral acceleration of vehicle body is considered. The observation accuracy resorting to this method cannot meet the requirements of vehicle real-time stability control, especially under extreme driving conditions. The paper explores the solution resorting to experimental method. Firstly, a multi-body dynamic model of a passenger car is built based on the ADAMS/Car software, whose dynamic accuracy is verified by the same vehicle's roadway test data of steady static circular test. Based on this simulation platform, several influencing factors of additional steer angle under different driving conditions are quantitatively analyzed. Then ε-SVR algorithm is employed to build the additional steer angle prediction model, whose input vectors mainly include the sensor information of standard electronic stability control system(ESC). The method of typical slalom tests and FMVSS 126 tests are adopted to make simulation, train model and test model's generalization performance. The test result shows that the influence of lateral acceleration on additional steer angle is maximal (the magnitude up to 1°), followed by the longitudinal acceleration-deceleration and the road wave amplitude (the magnitude up to 0.3°). Moreover, both the prediction accuracy and the calculation real-time of the model can meet the control requirements of ESC This research expands the accurate observation methods of the additional steer angle under extreme driving conditions.展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been develope...El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.展开更多
With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application relia...With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application reliability accurately with the information of system architecture and the components reliabilities together has become a knotty problem.In this paper,the defects in formal description of software architecture and the limitations in existed model assumptions are both analyzed.Moreover,a new software reliability model called Component Interaction Mode(CIM) is proposed.With this model,the problem for existed component-based software reliability analysis models that cannot deal with the cases of component interaction with non-failure independent and non-random control transition is resolved.At last,the practice examples are presented to illustrate the effectiveness of this model.展开更多
For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b...For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.展开更多
To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, dia...To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, diameter,age), maintenance cost, valve replacement cost, and annual average pressure. Based on variable selection and principal component analysis results, we extracted three main principle components—the pipe attribute principal component(PAPC), operation management principal component, and water pressure principal component. Of these, we found PAPC to have the most influence. Using principal component regression, we established an LRLF model with no detectable serial correlations. The adjusted R2 and RMSE values of the model were 0.717 and 2.067, respectively.This model represents a potentially useful tool for controlling leakage rate from the macroscopic viewpoint.展开更多
基金supported by grants The Natural Science Foundation of Inner Mongolia(2019MS08104)The Natural Science Foundation of Inner Mongolia(2022ZD09)The Central Government Guiding Special Funds for Development of Local Science and Technology(2020ZY0020).
文摘Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treating migraines through the use of network pharmacology and a rat migraine model.Methods:After identifying the active components of Horcha-6,the corresponding genes of the active components’target were obtained from the Universal Protein database,and a“compound-target-disease”network was constructed using Cytoscape 3.9.0 software.For the in vivo experiments,nitroglycerin was injected intraperitoneally into rats to create a migraine model.Pre-treatment with Horcha-6 was administered orally for 14 days,and rats were subjected to migraine-related behavior tests.RNA sequencing was performed to identify the gene expression regulated by Horcha-6 in the trigeminal nerve.Results:A total of 903 chemical components of Horcha-6 have been collected in the liquid chromatography with tandem mass spectrometry.We discovered 55 of the Horcha-6 bio-active components that were evaluated based on their Percent Human Oral Absorption(≥30%)and DL values(≥0.185)on the traditional Chinese medicine systems pharmacology database.The“compound-target-disease”network contained 163 intersection targets with the migraine state.Gene Ontology analysis indicated that these components significantly regulated the immune response,vascular function,oxidative stress,etc.When Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed,we observed that most of the target genes were significantly enriched in the inflammation and neuro-related signaling pathway,toll-like receptor signaling pathway,neuroactive ligand-receptor interaction,etc.These predictions were further demonstrated via in vivo animal model experiments.The RNA sequencing results showed that 41 genes were down-regulated(P<0.05)and 86 genes were up-regulated(P<0.05)in the Horcha-6 treated group compared with the untreated group.Those genes were mainly involved in neuromodulation,vascular function,and hormone metabolism.Conclusion:The 55 bio-active components in Horcha-6 regulate inflammation,hormone metabolism,and neurotransmitters and have potential as a therapy to treat migraines.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
基金supported by the National Natural Science Foundation of China (61903326, 61933015)。
文摘The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS2022-00167197Development of Intelligent 5G/6G Infrastructure Technology for the Smart City)+2 种基金in part by the National Research Foundation of Korea(NRF),Ministry of Education,through Basic Science Research Program under Grant NRF-2020R1I1A3066543in part by BK21 FOUR(Fostering Outstanding Universities for Research)under Grant 5199990914048in part by the Soonchunhyang University Research Fund.
文摘Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金the National Defence Foundation of China(Grant No.10104010201)
文摘Reflective real-time component model is a special component model, which can identify timing constraint characteristics of component and support dynamic design-time amendment of real-time component according to users' requirements. The reflective real-time component runtime environment is a bearing space and reflective infrastructure for this special component model. It consists of three parts and manages the lifecycle and various relevant services of reflective real-time component. In this paper its mechanism and relevant key techniques in design and realization are formally specified with the communicating sequential processing (CSP) and the extended timed communicating sequential processing (TCSP). Finally a prototype is established. Experimental study shows that this runtime environment can introduce a relevant reflective infrastructure guaranteeing dynamic and real-time features of software component.
文摘Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide requisite information for follow up designing segments such as structural analysis, design of technological process and manufacturing etc, and thereby lead to the reduction of product design period and the quality and reliability improvement of ICE components. So the developing situations of ICE components' 2 D drafting, 3 D modeling of ICE, overall CAD of ICE as well as component design expert system etc. are surveyed, which are the typical applications of computer aided modeling techniques in ICE component design process, and some existent problems and tasks are pointed out so as to make some references for the further research work.
文摘A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.
基金Project (No. 2004CB217901) supported by the National Basic Re-search Program (973) of China
文摘Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.
文摘Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software.
基金The project is partly supported by NSFC (19971085)the Doctoral Program Foundation of the Institute of High Education and the Special Foundation of Chinese Academy of Sciences.
文摘Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.
基金supported by National Natural Science Foundation of China(Grant No.51105001)State Key Laboratory of Automotive Safety and Energy,Tsinghua University,China(Grant No.KF14022)
文摘The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehicle dynamic model, in which only the lateral acceleration of vehicle body is considered. The observation accuracy resorting to this method cannot meet the requirements of vehicle real-time stability control, especially under extreme driving conditions. The paper explores the solution resorting to experimental method. Firstly, a multi-body dynamic model of a passenger car is built based on the ADAMS/Car software, whose dynamic accuracy is verified by the same vehicle's roadway test data of steady static circular test. Based on this simulation platform, several influencing factors of additional steer angle under different driving conditions are quantitatively analyzed. Then ε-SVR algorithm is employed to build the additional steer angle prediction model, whose input vectors mainly include the sensor information of standard electronic stability control system(ESC). The method of typical slalom tests and FMVSS 126 tests are adopted to make simulation, train model and test model's generalization performance. The test result shows that the influence of lateral acceleration on additional steer angle is maximal (the magnitude up to 1°), followed by the longitudinal acceleration-deceleration and the road wave amplitude (the magnitude up to 0.3°). Moreover, both the prediction accuracy and the calculation real-time of the model can meet the control requirements of ESC This research expands the accurate observation methods of the additional steer angle under extreme driving conditions.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
基金supported by the National Natural Science Foundation of China(NFSCGrant No.42030410)+2 种基金Laoshan Laboratory(No.LSKJ202202402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST.
文摘El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.
基金Supported by the National Natural Science Foundation of China (No. 60873195,60873003,and 61070220)the Doctoral Foundation of Ministry of Education (No.20090111110002)
文摘With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application reliability accurately with the information of system architecture and the components reliabilities together has become a knotty problem.In this paper,the defects in formal description of software architecture and the limitations in existed model assumptions are both analyzed.Moreover,a new software reliability model called Component Interaction Mode(CIM) is proposed.With this model,the problem for existed component-based software reliability analysis models that cannot deal with the cases of component interaction with non-failure independent and non-random control transition is resolved.At last,the practice examples are presented to illustrate the effectiveness of this model.
基金National Natural Science Foundation of China(61673279)。
文摘For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.
基金supported by the Ministry of Science and Technology of China (No.2014ZX07203-009)the Fundamental Research Funds for the Central Universitiesthe Program for New Century Excellent Talents at the University of China
文摘To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, diameter,age), maintenance cost, valve replacement cost, and annual average pressure. Based on variable selection and principal component analysis results, we extracted three main principle components—the pipe attribute principal component(PAPC), operation management principal component, and water pressure principal component. Of these, we found PAPC to have the most influence. Using principal component regression, we established an LRLF model with no detectable serial correlations. The adjusted R2 and RMSE values of the model were 0.717 and 2.067, respectively.This model represents a potentially useful tool for controlling leakage rate from the macroscopic viewpoint.