To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various manag...This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.展开更多
A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipm...A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.展开更多
Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved ...Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.展开更多
The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management ...The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management and control were ana- lyzed from external form to internal nature. Through introducing the value chain and relevant equipments of cold chain logistics, the correlation between the main technologies in Internet of Things and the common indices for cold chain logistics equipment management and control was analyzed in detail. The application values of Internet of Things technologies in cold chain logistics equipment management and control were illustrated, including the sample analysis on the application of radio-frequency identification (RFID). After the establishment of BSC performance evaluation index system of cold chain logistics equipment management and control, the optimization measures and suggestions on cold chain logistics equipment management and control under Internet of Things were put forward.展开更多
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s...Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.展开更多
A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operati...A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in real- time control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode. Moreover, the real-time control made it possible to optimize process operation and save aeration energy.展开更多
Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is emp...Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.展开更多
To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,per...To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...展开更多
Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these char...Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.展开更多
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ...A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.展开更多
Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed i...Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with rate-dependent components. Real-time hybrid simulation is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for actuator dynamics is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid simulation in which compensation for actuator dynamics is implemented using a model-based feedforward compensator. The method is used to evaluate the response of a semi-active control of a structure employing an MR damper. Experimental results show good agreement with the predicted responses, demonstrating the effectiveness of the method for structural control performance assessment.展开更多
With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overc...With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.展开更多
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Fir...Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.展开更多
Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis wi...Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.展开更多
Secure real-time databases must simultaneously satisfy two requirements in guaranteeing data security and minimizing the missing deadlines ratio of transactions. However, these two requirements can conflict with each ...Secure real-time databases must simultaneously satisfy two requirements in guaranteeing data security and minimizing the missing deadlines ratio of transactions. However, these two requirements can conflict with each other and achieve one requirement is to sacrifice the other. This paper presents a secure real-time concurrency control protocol based on optimistic method. The concurrency control protocol incorporates security constraints in a real-time optimistic concurrency control protocol and makes a suitable tradeoff between security and real-time requirements by introducing secure influence factor and real-time influence factor. The experimental results show the concurrency control protocol achieves data security without degrading real-time perform ance significantly.展开更多
Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to t...Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.展开更多
Pyropia haitanensis has prominent stress-resistance characteristics and is endemic to China. Studies into the stress responses in these algae could provide valuable information on the stress-response mechanisms in the...Pyropia haitanensis has prominent stress-resistance characteristics and is endemic to China. Studies into the stress responses in these algae could provide valuable information on the stress-response mechanisms in the intertidal Rhodophyta. Here, the effects of salinity and light intensity on the quantum yield of photosystem II in Py. haitanensis were investigated using pulse-amplitude-modulation fluorometry. Total RNA and genomic DNA of the samples under different stress conditions were isolated. By normalizing to the genomic DNA quantity, the RNA content in each sample was evaluated. The cDNA was synthesized and the expression levels of seven potential internal control genes were evaluated using qRT-PCR method. Then, we used geNorm, a common statistical algorithm, to analyze the qRT-PCR data of seven reference genes. Potential genes that may constantly be expressed under different conditions were selected, and these genes showed stable expression levels in samples under a salinity treatment, while tubulin, glyceraldehyde- 3-phosphate dehydrogenase and actin showed stability in samples stressed by strong light. Based on the results of the pulse amplitude-modulation fluorometry, an absolute quantification was performed to obtain gene copy numbers in certain stress-treated samples. The stably expressed genes as determined by the absolute quantification in certain samples conformed to the results of the geNorm screening. Based on the results of the software analysis and absolute quantification, we proposed that elongation factor 3 and 18S ribosomal RNA could be used as internal control genes when the Py. haitanensis blades were subjected to salinity stress, and that a-tubulin and 18S ribosomal RNA could be used as the internal control genes when the stress was from strong light. In general, our findings provide a convenient reference for the selection of internal control genes when designing experiments related to stress responses in Py. haitanensis.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
基金Research Grants Council of the Hong Kong Special Administrative Region,China(U15239024)。
文摘This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.
基金supported by the Youth Foundation of the National Natural Science Foundation of China(Grant No.51509252)。
文摘A new real-time underwater equipment location method adopting an electric field induced by a standard current source is proposed.Our goals were real-time tracking and location of stationary or moving underwater equipment both in shallow and deep seas,under noisy conditions.The main features of this method are as follows:(1)a standard current source on the water surface,which can be towed by a vehicle,consisting of two electrodes,a signal generator,and a GPS unit;(2)measurement of the extremely low frequency(ELF)electric field emitted by the current source,made possible by electric field sensors on the underwater equipment;(3)position of the underwater equipment is estimated in real time based on a progressive update extended Kalman filter(PUEKF),which is carried out using the propagation model of an ELF electric field because the electric field at the position of the underwater equipment and the current source position are known.We verified the accuracy of our method and confirmed real-time location feasibility through numerical,physical scale,and real-time sea experiments.Through numerical experiments,we verified that our method works for underwater equipment location in real-world conditions,and the location error can be less than 0.2 m.Next,real-time location experiments for stationary underwater measuring equipment in water tank were conducted.The result shows that the location error can be less than 0.1 m.We also confirmed real-time location feasibility through the use of offshore experiment.We expect that our method will complement conventional underwater acoustic location methods for underwater equipment in acoustically noisy environments.
基金Supported by the National Natural Science Foundation of China (51075029)
文摘Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.
基金Supported by the Project of Philosophy and Social Sciences during the 12th Five-year Plan of Guangxi Zhuang Autonomous Region,China (11FGL031)~~
文摘The status and supporting policies of cold chain logistics equipment man- agement and control in China were described. The connotation of Internet of Things and its impact on cold chain logistics equipment management and control were ana- lyzed from external form to internal nature. Through introducing the value chain and relevant equipments of cold chain logistics, the correlation between the main technologies in Internet of Things and the common indices for cold chain logistics equipment management and control was analyzed in detail. The application values of Internet of Things technologies in cold chain logistics equipment management and control were illustrated, including the sample analysis on the application of radio-frequency identification (RFID). After the establishment of BSC performance evaluation index system of cold chain logistics equipment management and control, the optimization measures and suggestions on cold chain logistics equipment management and control under Internet of Things were put forward.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC1407003,2017YFC1405300)
文摘Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height.
基金The Project of Beijing Science and Technology Committee (No.020620010120) ,the Hi_Tech Research and Development Program(863) of China (No.2004AA601020) ,the Project under Key International Cooperative Programs of NSFC(No.50521140075) and the Project of Key Laboratory of Beiing
文摘A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes: traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in real- time control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode. Moreover, the real-time control made it possible to optimize process operation and save aeration energy.
基金National Natural Science Foundation of China under Grant Nos.51725901 and 51639006
文摘Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.
文摘To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...
基金The National High Technology Research&Development Program of China under contract No.2012AA10A411the National Natural Science Foundation of China under contract Nos 41176151 and 41276177
文摘Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.
基金National Natural Science Foundation of China(No.50539120)National Basic Research Program of China("973"Program,No. 2007 CB714101)+1 种基金National Science Fund for Distinguished Young Scholars of China(No.50525927)National Natural Science Founda-tion of China(No.50579045)
文摘A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.
基金National Science Foundation Graduate Research Fellowship
文摘Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with rate-dependent components. Real-time hybrid simulation is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for actuator dynamics is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid simulation in which compensation for actuator dynamics is implemented using a model-based feedforward compensator. The method is used to evaluate the response of a semi-active control of a structure employing an MR damper. Experimental results show good agreement with the predicted responses, demonstrating the effectiveness of the method for structural control performance assessment.
基金This work was supported in part by the National Nature Science Foundation of China(51922059)in part by the Beijing Natural Science Foundation(JQ19010)in part by the China Postdoctoral Science Foundation(2021T140371).
文摘With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
文摘Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.
基金supported by the Science and Technology Major Project 2020 of Liaoning Province,China(2020JH1/10100008)National Natural Science Foundation of China(61991404 and 61991400)111 Project 2.0(B08015)。
文摘Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.
基金Supported by the Defense Pre-Research Project ofthe"Tenth Five-Year-Plan"of China (413150403)
文摘Secure real-time databases must simultaneously satisfy two requirements in guaranteeing data security and minimizing the missing deadlines ratio of transactions. However, these two requirements can conflict with each other and achieve one requirement is to sacrifice the other. This paper presents a secure real-time concurrency control protocol based on optimistic method. The concurrency control protocol incorporates security constraints in a real-time optimistic concurrency control protocol and makes a suitable tradeoff between security and real-time requirements by introducing secure influence factor and real-time influence factor. The experimental results show the concurrency control protocol achieves data security without degrading real-time perform ance significantly.
基金Project (60505018) supported by the National Natural Science Foundation of China
文摘Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.
基金Supported by the National Natural Science Foundation of China(Nos.41476140,41306151,41676157,41506172)the Strategic Leading Science and Technology Projects of Chinese Academy of Sciences(No.XDA11020404)+1 种基金the China Postdoctoral Science Foundation(No.2015M582153)the Science and Technology Plan of Jiangsu Province(No.BE2016330)
文摘Pyropia haitanensis has prominent stress-resistance characteristics and is endemic to China. Studies into the stress responses in these algae could provide valuable information on the stress-response mechanisms in the intertidal Rhodophyta. Here, the effects of salinity and light intensity on the quantum yield of photosystem II in Py. haitanensis were investigated using pulse-amplitude-modulation fluorometry. Total RNA and genomic DNA of the samples under different stress conditions were isolated. By normalizing to the genomic DNA quantity, the RNA content in each sample was evaluated. The cDNA was synthesized and the expression levels of seven potential internal control genes were evaluated using qRT-PCR method. Then, we used geNorm, a common statistical algorithm, to analyze the qRT-PCR data of seven reference genes. Potential genes that may constantly be expressed under different conditions were selected, and these genes showed stable expression levels in samples under a salinity treatment, while tubulin, glyceraldehyde- 3-phosphate dehydrogenase and actin showed stability in samples stressed by strong light. Based on the results of the pulse amplitude-modulation fluorometry, an absolute quantification was performed to obtain gene copy numbers in certain stress-treated samples. The stably expressed genes as determined by the absolute quantification in certain samples conformed to the results of the geNorm screening. Based on the results of the software analysis and absolute quantification, we proposed that elongation factor 3 and 18S ribosomal RNA could be used as internal control genes when the Py. haitanensis blades were subjected to salinity stress, and that a-tubulin and 18S ribosomal RNA could be used as the internal control genes when the stress was from strong light. In general, our findings provide a convenient reference for the selection of internal control genes when designing experiments related to stress responses in Py. haitanensis.