The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Fir...Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.展开更多
Microgrid (MG) systems effectively integrate a generation mix of solar, wind, and other renewable energy resources. The intermittent nature of renewable resources and the unpredictable weather conditions contribute la...Microgrid (MG) systems effectively integrate a generation mix of solar, wind, and other renewable energy resources. The intermittent nature of renewable resources and the unpredictable weather conditions contribute largely to the unreliability of microgrid real-time operation. This paper investigates the behavior of microgrid for different intermittent scenarios of photovoltaic generation in real-time. Reactive power coordination control and load shedding mechanisms are used for reliable operation and are implemented using OPAL-RT simulator integrated with Matlab. In an islanded MG, load shedding can be an effective mechanism to maintain generation-load balance. The microgrid of the German Jordanian University (GJU) is used for illustration. The results show that reactive power coordination control not only stabilizes the MG operation in real-time but also reduces power losses on transmission lines. The results also show that the power losses at some substations are reduced by a range of 6% - 9.8%.展开更多
Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast d...Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.展开更多
Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on...Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on-line detection for travel times and lack of dedicated medium access control(MAC)protocols.In this study,we propose a dedicated MAC protocol package for real-time ocean current velocity estimation using distributed UASNs.First,we introduce the process and requirements of ocean current velocity estimation.Then,we present a series of spatial reuse time division multiple access(TDMA)protocols for each phase of real-time ocean current field estimation using distributed UASNs,followed by numerical analysis.We divide UASNs into two categories according to their computing ability:feature-complete and feature-incomplete systems.The feature-complete systems that have abundant computing ability carry out the presented MAC protocol package in three phases,whereas the feature-incomplete ones do not have enough computing ability and the presented MAC protocol package is reduced to two phases plus an additional downloading phase.Numerical analysis shows that feature-complete systems using mini-slot TDMA have the best real-time performance,in comparison with feature-incomplete systems and other feature-complete counterparts.Feature-incomplete systems are more energy-saving than feature-complete ones,owing to the absence of in-network data exchange.展开更多
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
文摘Abstract-The ineffective utilization of power resources has attracted much attention in current years. This paper proposes a real-time distributed load scheduling algorithm considering constraints of power supply. Firstly, an objective function is designed based on the constraint, and a base load forecasting model is established when aggregating renewable generation and non-deferrable load into a power system, which aims to transform the problem of deferrable loads scheduling into a distributed optimal control problem. Then, to optimize the objective function, a real-time scheduling algorithm is presented to solve the proposed control problem. At every time step, the purpose is to minimize the variance of differences between power supply and aggregate load, which can thus ensure the effective utilization of power resources. Finally, simulation examples are provided to illustrate the effectiveness of the proposed algorithm.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
文摘Microgrid (MG) systems effectively integrate a generation mix of solar, wind, and other renewable energy resources. The intermittent nature of renewable resources and the unpredictable weather conditions contribute largely to the unreliability of microgrid real-time operation. This paper investigates the behavior of microgrid for different intermittent scenarios of photovoltaic generation in real-time. Reactive power coordination control and load shedding mechanisms are used for reliable operation and are implemented using OPAL-RT simulator integrated with Matlab. In an islanded MG, load shedding can be an effective mechanism to maintain generation-load balance. The microgrid of the German Jordanian University (GJU) is used for illustration. The results show that reactive power coordination control not only stabilizes the MG operation in real-time but also reduces power losses on transmission lines. The results also show that the power losses at some substations are reduced by a range of 6% - 9.8%.
基金funded by Geran Galakan Penyelidik Muda GGPM-2020-004 Universiti Kebangsaan Malaysia.
文摘Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.
基金This work was supported by the National Natural Science Foundation of China(No.61531017)the Science and Technology Bureau of Zhoushan(No.2018C41029)the Science and Technology Department of Zhejiang Province(Nos.2018R52046 and LGG18F010005).
文摘Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on-line detection for travel times and lack of dedicated medium access control(MAC)protocols.In this study,we propose a dedicated MAC protocol package for real-time ocean current velocity estimation using distributed UASNs.First,we introduce the process and requirements of ocean current velocity estimation.Then,we present a series of spatial reuse time division multiple access(TDMA)protocols for each phase of real-time ocean current field estimation using distributed UASNs,followed by numerical analysis.We divide UASNs into two categories according to their computing ability:feature-complete and feature-incomplete systems.The feature-complete systems that have abundant computing ability carry out the presented MAC protocol package in three phases,whereas the feature-incomplete ones do not have enough computing ability and the presented MAC protocol package is reduced to two phases plus an additional downloading phase.Numerical analysis shows that feature-complete systems using mini-slot TDMA have the best real-time performance,in comparison with feature-incomplete systems and other feature-complete counterparts.Feature-incomplete systems are more energy-saving than feature-complete ones,owing to the absence of in-network data exchange.