期刊文献+
共找到27,541篇文章
< 1 2 250 >
每页显示 20 50 100
A Real-time Data Model Based on Temporal Data
1
作者 ZHANG Xiao-fang LIU Yun-sheng 《Journal of China University of Mining and Technology》 2006年第3期312-316,共5页
Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of... Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of absolute and relative temporal consistency. In real-time database systems, it is often the case that the policies of transaction schedules only consider the deadline of real-time transactions, making it insufficient to ensure temporal correctness of transactions. A policy is given by considering both the deadlines of transactions and the “data deadline” to schedule real-time transactions. A real-time relational data model and a real-time relational algebra based on the characteristics of temporal data are also proposed. In this model, the temporal data has not only corresponding values, but also validity intervals corresponding to the data values. At the same time, this model is able to keep historical data values. When validity interval of a relation is [NOW, NOW], real-time relational algebra will transform to traditional relational algebra. 展开更多
关键词 实时数据库 时间数据 实时数据模型 关系代数
下载PDF
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization
2
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis
3
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
A Stochastic Model to Assess the Epidemiological Impact of Vaccine Booster Doses on COVID-19 and Viral Hepatitis B Co-Dynamics with Real Data
4
作者 Andrew Omame Mujahid Abbas Dumitru Baleanu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2973-3012,共40页
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi... A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted. 展开更多
关键词 Viral hepatitis B COVID-19 stochastic model EXTINCTION ERGODICITY real data
下载PDF
Dominant woody plant species recognition with a hierarchical model based on multimodal geospatial data for subtropical forests
5
作者 Xin Chen Yujun Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期111-130,共20页
Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully... Since the launch of the Google Earth Engine(GEE)cloud platform in 2010,it has been widely used,leading to a wealth of valuable information.However,the potential of GEE for forest resource management has not been fully exploited.To extract dominant woody plant species,GEE combined Sen-tinel-1(S1)and Sentinel-2(S2)data with the addition of the National Forest Resources Inventory(NFRI)and topographic data,resulting in a 10 m resolution multimodal geospatial dataset for subtropical forests in southeast China.Spectral and texture features,red-edge bands,and vegetation indices of S1 and S2 data were computed.A hierarchical model obtained information on forest distribution and area and the dominant woody plant species.The results suggest that combining data sources from the S1 winter and S2 yearly ranges enhances accuracy in forest distribution and area extraction compared to using either data source independently.Similarly,for dominant woody species recognition,using S1 winter and S2 data across all four seasons was accurate.Including terrain factors and removing spatial correlation from NFRI sample points further improved the recognition accuracy.The optimal forest extraction achieved an overall accuracy(OA)of 97.4%and a maplevel image classification efficacy(MICE)of 96.7%.OA and MICE were 83.6%and 80.7%for dominant species extraction,respectively.The high accuracy and efficacy values indicate that the hierarchical recognition model based on multimodal remote sensing data performed extremely well for extracting information about dominant woody plant species.Visualizing the results using the GEE application allows for an intuitive display of forest and species distribution,offering significant convenience for forest resource monitoring. 展开更多
关键词 Google Earth Engine SENTINEL Forest resource inventory data Dominant woody plant species SUBTROPICS model performance
下载PDF
Analysis of Secured Cloud Data Storage Model for Information
6
作者 Emmanuel Nwabueze Ekwonwune Udo Chukwuebuka Chigozie +1 位作者 Duroha Austin Ekekwe Georgina Chekwube Nwankwo 《Journal of Software Engineering and Applications》 2024年第5期297-320,共24页
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac... This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system. 展开更多
关键词 CLOUD data Information model data Storage Cloud Computing Security System data Encryption
下载PDF
Intelligent Energy Utilization Analysis Using IUA-SMD Model Based Optimization Technique for Smart Metering Data
7
作者 K.Rama Devi V.Srinivasan +1 位作者 G.Clara Barathi Priyadharshini J.Gokulapriya 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期90-98,共9页
Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on d... Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data. 展开更多
关键词 electricity consumption predictive model data analytics smart metering machine learning
下载PDF
Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data 被引量:1
8
作者 Xuyan Tan Weizhong Chen +2 位作者 Tao Zou Jianping Yang Bowen Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期886-895,共10页
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i... Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure. 展开更多
关键词 Shied tunnel Machine learning MONITORING real-time prediction data analysis
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
9
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security Network Security Cyber Resilience real-time Threat Analysis Cyber Threats Cyberattacks Threat Intelligence Machine Learning Artificial Intelligence Threat Detection Threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat modeling Security Architecture
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
10
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional data Linear Regression model Least Square Method Robust Least Square Method Synthetic data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization Algorithm k-Nearest Neighbor and Mean imputation
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
11
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 real-time health data monitoring Cache-Assisted real-time Detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
Real-Time Prediction Algorithm for Intelligent Edge Networks with Federated Learning-Based Modeling
12
作者 Seungwoo Kang Seyha Ros +3 位作者 Inseok Song Prohim Tam Sa Math Seokhoon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第11期1967-1983,共17页
Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requi... Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation. 展开更多
关键词 Edge computing federated logistic regression intelligent healthcare networks prediction modeling privacy-aware and real-time learning
下载PDF
Modeling of Optimal Deep Learning Based Flood Forecasting Model Using Twitter Data 被引量:1
13
作者 G.Indra N.Duraipandian 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1455-1470,共16页
Aflood is a significant damaging natural calamity that causes loss of life and property.Earlier work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit prop... Aflood is a significant damaging natural calamity that causes loss of life and property.Earlier work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage caused byfloods.The massive amount of data generated by social media platforms such as Twitter opens the door toflood analysis.Because of the real-time nature of Twitter data,some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue strategy.However,due to the shorter duration of Tweets,it is difficult to construct a perfect prediction model for determiningflood.Machine learning(ML)and deep learning(DL)approaches can be used to statistically developflood prediction models.At the same time,the vast amount of Tweets necessitates the use of a big data analytics(BDA)tool forflood prediction.In this regard,this work provides an optimal deep learning-basedflood forecasting model with big data analytics(ODLFF-BDA)based on Twitter data.The suggested ODLFF-BDA technique intends to anticipate the existence offloods using tweets in a big data setting.The ODLFF-BDA technique comprises data pre-processing to convert the input tweets into a usable format.In addition,a Bidirectional Encoder Representations from Transformers(BERT)model is used to generate emotive contextual embed-ding from tweets.Furthermore,a gated recurrent unit(GRU)with a Multilayer Convolutional Neural Network(MLCNN)is used to extract local data and predict theflood.Finally,an Equilibrium Optimizer(EO)is used tofine-tune the hyper-parameters of the GRU and MLCNN models in order to increase prediction performance.The memory usage is pull down lesser than 3.5 MB,if its compared with the other algorithm techniques.The ODLFF-BDA technique’s performance was validated using a benchmark Kaggle dataset,and thefindings showed that it outperformed other recent approaches significantly. 展开更多
关键词 Big data analytics predictive models deep learning flood prediction twitter data hyperparameter tuning
下载PDF
A data assimilation-based forecast model of outer radiation belt electron fluxes 被引量:1
14
作者 Yuan Lei Xing Cao +3 位作者 BinBin Ni Song Fu TaoRong Luo XiaoYu Wang 《Earth and Planetary Physics》 CAS CSCD 2023年第6期620-630,共11页
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ... Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications. 展开更多
关键词 Earth’s outer radiation belt data assimilation electron flux forecast model performance evaluation
下载PDF
Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data 被引量:1
15
作者 WANG Fengfei TANG Shengjin +3 位作者 SUN Xiaoyan LI Liang YU Chuanqiang SI Xiaosheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期247-258,共12页
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n... Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction. 展开更多
关键词 remaining useful life(RUL)prediction imperfect prior information failure time data NONLINEAR random coefficient regression(RCR)model
下载PDF
Quality control of marine big data——a case study of real-time observation station data in Qingdao 被引量:6
16
作者 QIAN Chengcheng LIU Aichao +4 位作者 HUANG Rui LIU Qingrong XU Wenkun ZHONG Shan YU Le 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1983-1993,共11页
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s... Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height. 展开更多
关键词 quality control real-time STATION data MARINE BIG data Xiaomaidao STATION MARINE DISASTER
下载PDF
On modeling approach for embedded real-time software simulation testing 被引量:6
17
作者 Yin Yongfeng Liu Bin Zhong Deming Jiang Tongmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期420-426,共7页
Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and emb... Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software. 展开更多
关键词 embedded real-time software software testing testing modeling SIMULATION
下载PDF
A multi-sensor-based distributed real-time measurement system for glacier deformation
18
作者 DONG Han-chuan LIU Shuang +4 位作者 PANG Li-li TAO Zhi-gang FANG Li-de ZHANG Zhong-hua LI Xiao-ting 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2913-2927,共15页
Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this stud... Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this study,a distributed multi-sensor measurement system for glacier deformation was established by integrating piezoelectric sensing,coded sensing,attitude sensing technology and wireless communication technology.The traditional Modbus protocol was optimized to solve the problem of data identification confusion of different acquisition nodes.Through indoor wireless transmission,adaptive performance analysis,error measurement experiment and landslide simulation experiment,the performance of the measurement system was analyzed and evaluated.Using unmanned aerial vehicle technology,the reliability and effectiveness of the measurement system were verified on the site of Galongla glacier in southeastern Tibet,China.The results show that the mean absolute percentage errors were only 1.13%and 2.09%for the displacement and temperature,respectively.The distributed glacier deformation real-time measurement system provides a new means for the assessment of the development process of glacier disasters and disaster prevention and mitigation. 展开更多
关键词 Glacier disasters Distributed deformation measurement MULTI-SENSOR real-time LoRa data adaptive.
下载PDF
Experimental Model and Analytic Solution for Real-time Observation of Vehicle's Additional Steer Angle 被引量:3
19
作者 ZHANG Xiaolong LI Liang +2 位作者 PAN Deng CAO Chengmao SONG Jian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期340-347,共8页
The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehi... The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehicle dynamic model, in which only the lateral acceleration of vehicle body is considered. The observation accuracy resorting to this method cannot meet the requirements of vehicle real-time stability control, especially under extreme driving conditions. The paper explores the solution resorting to experimental method. Firstly, a multi-body dynamic model of a passenger car is built based on the ADAMS/Car software, whose dynamic accuracy is verified by the same vehicle's roadway test data of steady static circular test. Based on this simulation platform, several influencing factors of additional steer angle under different driving conditions are quantitatively analyzed. Then ε-SVR algorithm is employed to build the additional steer angle prediction model, whose input vectors mainly include the sensor information of standard electronic stability control system(ESC). The method of typical slalom tests and FMVSS 126 tests are adopted to make simulation, train model and test model's generalization performance. The test result shows that the influence of lateral acceleration on additional steer angle is maximal (the magnitude up to 1°), followed by the longitudinal acceleration-deceleration and the road wave amplitude (the magnitude up to 0.3°). Moreover, both the prediction accuracy and the calculation real-time of the model can meet the control requirements of ESC This research expands the accurate observation methods of the additional steer angle under extreme driving conditions. 展开更多
关键词 VEHICLE ADAMS model additional steer SVM real-time observation
下载PDF
Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements 被引量:3
20
作者 Jinsong Li Hao Liu +2 位作者 Wenzhuo Li Tianshu Bi Mingyang Zhao 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期131-142,共12页
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ... The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests. 展开更多
关键词 Power system data network Wide-frequency information real-time system Traffic analysis Optimization strategy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部