A compact four-component two-dimensional (2-D) finite-difference frequency domain (FDFD) method with the equivalent surface impedance boundary condition is used to analyze the dispersion characteristics of multila...A compact four-component two-dimensional (2-D) finite-difference frequency domain (FDFD) method with the equivalent surface impedance boundary condition is used to analyze the dispersion characteristics of multilayer metal-coated waveguides. According to the equivalent surface impedance boundary condition,the relationship between transverse field components on the boundary can be easily depicted. Once the eigen equation is solved,the propagation constant can be obtained as the eigen value for a given frequency. Results of the proposed method agaree well with those of high frequency structure simulator(HFSS).展开更多
Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impeda...Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..展开更多
A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the acc...A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the accuracy and repeatability of the AC impedance test.Secondly,the AC impedance spectroscopy between the steel bar and concrete surface of different bonding positions was tested,and then the physical quantities reflecting the bonding damage condition were obtained by equivalent circuit fitting.Theoretical debonding position calculation and AC conductive structure analysis indicate that the change of interface resistance and interface capacitance can seize the development of bonding damage during the loading process.As the interface damage develops,obvious changes in interface resistance and interface capacitance are observed,and they cannot be recovered after unloading.展开更多
Impedance spectroscopy has been increasingly employed in quantum dot light-emitting diodes(QLEDs)to investigate the charge dynamics and device physics.In this review,we introduce the mathematical basics of impedance s...Impedance spectroscopy has been increasingly employed in quantum dot light-emitting diodes(QLEDs)to investigate the charge dynamics and device physics.In this review,we introduce the mathematical basics of impedance spectroscopy that applied to QLEDs.In particular,we focus on the Nyquist plot,Mott-Schottky analysis,capacitance-frequency and capacitance-voltage characteristics,and the d C/d V measurement of the QLEDs.These impedance measurements can provide critical information on electrical parameters such as equivalent circuit models,characteristic time constants,charge injection and recombination points,and trap distribution of the QLEDs.However,this paper will also discuss the disadvantages and limitations of these measurements.Fundamentally,this review provides a deeper understanding of the device physics of QLEDs through the application of impedance spectroscopy,offering valuable insights into the analysis of performance loss and degradation mechanisms of QLEDs.展开更多
The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominat...The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominator.These outliers can result in inaccuracy and unreliability of harmonic source location.To address this issue,this paper proposes an innovative method of equivalent impedance parameter calculation of three-phase symmetrical loads that avoid outliers.The correctness and effectiveness of the proposed method are verified by simulations on Simulink using actual monitoring data.The results show that the proposed method is not only simple and easy to implement but also highly accurate.展开更多
The influence of an acoustic logging tool on borehole guided wave propagation should be considered in the processing and inversion of the guided waves for formation acoustic property estimation. This study introduces ...The influence of an acoustic logging tool on borehole guided wave propagation should be considered in the processing and inversion of the guided waves for formation acoustic property estimation. This study introduces an equivalent-tool theory that models the tool response using an elastic rod with an effective modulus and applies the theory to multipole acoustic logging for both wireline and logging while drilling (LWD) conditions. The theory can be derived by matching the tool’s acoustic impedance/conductance to that of the multipole acoustic wavefield around the tool, assuming that tool radius is small compared to wavelength. We have validated the effectiveness and accuracy of the theory using numerical modeling and its practicality using field data. In field data applications, one can calibrate the tool parameters by fitting the theoretical dispersion curve to field data without having to consider the actual tool’s structure and composition. We use a dispersion correction example to demonstrate an application of the simple theory to field data processing and the validity of the processing result.展开更多
Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline so lutions. The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was s...Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline so lutions. The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was stu died by ac impedance spectroscopy. Electrooxidation of ethanol on Ni shows negative resistance on impedance plots. The impedance shows different patterns at different applied anodic potential. The influence of the electrode potential on impedance was studied and a quantitative explanation for the impedance of ethanol oxidation was given by means of a proposed mathematical model. At potentials higher than 0.52 V(vs. Ag/AgCl), a pseudoinductive behavior was observed, but at those higher than 0.57 V, impedance patterns were reversed to the second and third quadrants. The conditions required for the reversing of impedance pattern were delineated with the impedance model.展开更多
TiO2 colloid was prepared by the sol-gel method and was bladed on transparent conduction glass to made nanoporous electrode. The impedance performance of TiO2 electrode was studied at various bias potential.A simplifi...TiO2 colloid was prepared by the sol-gel method and was bladed on transparent conduction glass to made nanoporous electrode. The impedance performance of TiO2 electrode was studied at various bias potential.A simplified equivalent circuit was proposed to investigate the charge transport impedance of TiO2 film and good fitting results were obtained.展开更多
Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide...Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide xerogel films was simulated with an equivalent circuit model, which was derived from the mechanism of electrode reactions. Measured electrochemical impedance spectra at various electrode potentials were analyzed by using the complex non-linear least-squares fitting method. The results show that impedance spectra consist of 2 high-to- medium frequency depressed arcs and a low frequency straight line. The high frequency arc is attributed to the absorption reaction of lithium ions into the oxide film, the medium frequency arc is attributed to the charge transfer reaction at the vanadium oxide/electrolyte interface and the low frequency is characterized by a straight line with a phase angle of 45° corresponding to the diffusion of lithium ion through vanadium oxide phase. The experimental and calculated results are compared and discussed focusing on the electrochemical performance and the state of charge of the electrode. Moreover, the high consistence of the fitted values of the model to the experimental data indicates that this mathematical model does give a satisfying description of the intercalation process of vanadium pentoxide xerogel films.展开更多
In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments.A number of different approaches,which differ even by the definition of the problem,are used in the literature...In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments.A number of different approaches,which differ even by the definition of the problem,are used in the literature.Some aimed towards finding an equivalent circuit.Others aimed towards finding directly dielectric properties of the material under an assumed model.Others towards finding distribution of relaxation times,either parametric or point-by point.No matter what the approach is,this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well.Therefore some a-priori knowledge about the system must he used.In addition,we should remember that the ultimate goal is to get physical insight about the system.展开更多
The electrochemical quartz crystal impedance system (EQCIS) has been used for the study of a partially immersed Au electrode in 0.2 mol/L NaClO4 aqueous solution. The influences of the immersed area and height of the ...The electrochemical quartz crystal impedance system (EQCIS) has been used for the study of a partially immersed Au electrode in 0.2 mol/L NaClO4 aqueous solution. The influences of the immersed area and height of the electrode on the EQCIS responses were evaluated, showing the highest response sensitivity to liquid loading at the center of the piezoelectric quartz crystal electrode. The increase in the immersed height of the Au electrode at oxygen reduction potentials during potential cycling was measured by this technique.展开更多
Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating su...Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.展开更多
The exact and approximate expressions for the field components of the TE modes in a sectoral waveguide are presented. Using the equivalence principle, the electric field distribution on the aperture surfaces of a narr...The exact and approximate expressions for the field components of the TE modes in a sectoral waveguide are presented. Using the equivalence principle, the electric field distribution on the aperture surfaces of a narrow transverse slot cut in the curved broad wall of a sectoral waveguide is solved by the moment method (Galerkin's method). lmportant results such as the scattering parameter, the normalized equivalent series impedance, the resonant resistance and resonant length are studied.展开更多
Despite great progress in lithium-sulfur(Li-S) batteries, the electrochemical reactions in the cell are not yet fully understood. Electrode processes, complex interfaces and internal resistance may be characterized by...Despite great progress in lithium-sulfur(Li-S) batteries, the electrochemical reactions in the cell are not yet fully understood. Electrode processes, complex interfaces and internal resistance may be characterized by electrochemical impedance spectroscopy(EIS). EIS is a non-destructive technique and easy to apply, though there are challenges in ensuring the reproducibility of measurements and the interpretation of impedance data. Here, we present the impedance behavior of a 3.4 Ah Li-S pouch cell characterized by EIS. The impedance changes were analyzed over the entire depth-of-discharge, depth-of-charge,and at various temperatures. Based on the formation of intermediates during(dis)charging, the changes of resistances are observed. Overall, the increase in temperature causes a decrease in electrolyte viscosity,lowering the surface energy which can improve the penetration of the electrolyte into the electrode pores. Moreover, the effect of superimposed AC current during EIS measurement was analyzed, and the results show the dependence of the charge transfer resistance on superimposed AC current which was lower compared to steady-state conditions and consents with theory.展开更多
The AC impedance of amorphous-nano-crystalline silicon composite thin films (a-nc-Si:H) from mHz to MHz at different temperatures has been studied. The samples were prepared by Plasma Enhanced Chemical Vapor Depositio...The AC impedance of amorphous-nano-crystalline silicon composite thin films (a-nc-Si:H) from mHz to MHz at different temperatures has been studied. The samples were prepared by Plasma Enhanced Chemical Vapor Deposition technique. The X-ray diffraction and high resolution electron microscopy showed that films consist of isolated nano-crystals embedded in amorphous matrix. In analysis of impedance data, two approaches were tested: the ideal Deby type equivalent circuit and modified one, with CPE (constant phase elements). It was found that the later better fits to results. The amorphous matrix showed larger resistance and lower capacity than nano-crystals. By heat treatment in vacuum, the capacity for both phases changes, according to expected change in size of ordered domains.展开更多
周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利...周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利用单片机共时钟基准的模/数转换器(digital to analog convertor,DAC)与数/模转换器(analog to digital convertor,ADC)模块,在完成激励信号产生、输入输出信号同步采集的基础上,合理设计激励信号频率、采集频率与信号重构方法,实现高频信号单周期内均匀相位分布的等效高频采样,同时为克服常规A/D转换速度条件下难以准确实现高频阻抗谱测量的问题提供了新思路。从误差假设与拟合算法的角度,理论上分析证明了该方法降低误差的原因。并通过两种等效电路模型的阻抗谱测量对比实验,表明该方法在所设计的20~100 kHz高频段上,阻抗测量精度与稳定性得到了显著的提高。展开更多
基金Supported by the Project Innovation of Graduate Students of Jiangsu Province of China(CX09B-079Z)the Basic Research Items of National Key Lab of Electronic Measurement Technology~~
文摘A compact four-component two-dimensional (2-D) finite-difference frequency domain (FDFD) method with the equivalent surface impedance boundary condition is used to analyze the dispersion characteristics of multilayer metal-coated waveguides. According to the equivalent surface impedance boundary condition,the relationship between transverse field components on the boundary can be easily depicted. Once the eigen equation is solved,the propagation constant can be obtained as the eigen value for a given frequency. Results of the proposed method agaree well with those of high frequency structure simulator(HFSS).
文摘Electrochemical quartz crystal impedance system (EQCIS) which allows in situ dynamic quartz crystal impedance measurement in an electrochemical experiment was developed by combining an HP 4395A Network/Spectrum/Impedance analyzer with an EG&G M283 potentiostat. Equivalent circuit parameters of crystal resonance change significantly during electrodeposition and dissolution of copper in 0.1 mol/L H2SO4 aqueous solution in a cyclic potential sweep experiment, which is explained with an overall picture of mass loading, solution density and viscosity, etc..
基金Funded by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology (No.BSBE2019-07)the Young Talent Support Program of Hebei Institutions of Higher Learning (No.BJ2017019)the National Natural Science Foundation of China (No.51808357)。
文摘A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the accuracy and repeatability of the AC impedance test.Secondly,the AC impedance spectroscopy between the steel bar and concrete surface of different bonding positions was tested,and then the physical quantities reflecting the bonding damage condition were obtained by equivalent circuit fitting.Theoretical debonding position calculation and AC conductive structure analysis indicate that the change of interface resistance and interface capacitance can seize the development of bonding damage during the loading process.As the interface damage develops,obvious changes in interface resistance and interface capacitance are observed,and they cannot be recovered after unloading.
基金supported by National Key Research and Development Program of China(Nos.2021YFB3602703,2022YFB3606504,and 2022YFB3602903)Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.ZDSYS201707281632549)Shenzhen Science and Technology Program(No.JCYJ20220818100411025)。
文摘Impedance spectroscopy has been increasingly employed in quantum dot light-emitting diodes(QLEDs)to investigate the charge dynamics and device physics.In this review,we introduce the mathematical basics of impedance spectroscopy that applied to QLEDs.In particular,we focus on the Nyquist plot,Mott-Schottky analysis,capacitance-frequency and capacitance-voltage characteristics,and the d C/d V measurement of the QLEDs.These impedance measurements can provide critical information on electrical parameters such as equivalent circuit models,characteristic time constants,charge injection and recombination points,and trap distribution of the QLEDs.However,this paper will also discuss the disadvantages and limitations of these measurements.Fundamentally,this review provides a deeper understanding of the device physics of QLEDs through the application of impedance spectroscopy,offering valuable insights into the analysis of performance loss and degradation mechanisms of QLEDs.
基金supported by the National Natural Science Foundation of China(No.51777035).
文摘The equivalent impedance parameters of loads have been widely used to identify and locate the harmonic sources.However,the existing calculation methods suffer from outliers caused by the zero-crossing of the denominator.These outliers can result in inaccuracy and unreliability of harmonic source location.To address this issue,this paper proposes an innovative method of equivalent impedance parameter calculation of three-phase symmetrical loads that avoid outliers.The correctness and effectiveness of the proposed method are verified by simulations on Simulink using actual monitoring data.The results show that the proposed method is not only simple and easy to implement but also highly accurate.
基金supported by the Fundamental Research Funds for the Central Universities and the National Hi-tech Research and Development Program of China (863 Program) (Grant No. 2007AA06Z232 )
文摘The influence of an acoustic logging tool on borehole guided wave propagation should be considered in the processing and inversion of the guided waves for formation acoustic property estimation. This study introduces an equivalent-tool theory that models the tool response using an elastic rod with an effective modulus and applies the theory to multipole acoustic logging for both wireline and logging while drilling (LWD) conditions. The theory can be derived by matching the tool’s acoustic impedance/conductance to that of the multipole acoustic wavefield around the tool, assuming that tool radius is small compared to wavelength. We have validated the effectiveness and accuracy of the theory using numerical modeling and its practicality using field data. In field data applications, one can calibrate the tool parameters by fitting the theoretical dispersion curve to field data without having to consider the actual tool’s structure and composition. We use a dispersion correction example to demonstrate an application of the simple theory to field data processing and the validity of the processing result.
文摘Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline so lutions. The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was stu died by ac impedance spectroscopy. Electrooxidation of ethanol on Ni shows negative resistance on impedance plots. The impedance shows different patterns at different applied anodic potential. The influence of the electrode potential on impedance was studied and a quantitative explanation for the impedance of ethanol oxidation was given by means of a proposed mathematical model. At potentials higher than 0.52 V(vs. Ag/AgCl), a pseudoinductive behavior was observed, but at those higher than 0.57 V, impedance patterns were reversed to the second and third quadrants. The conditions required for the reversing of impedance pattern were delineated with the impedance model.
基金support by Nation Research Fund for Fundamental Key Project(No.2006CB202605)Nation Natural Science Foundation of China(No.50473055)
文摘TiO2 colloid was prepared by the sol-gel method and was bladed on transparent conduction glass to made nanoporous electrode. The impedance performance of TiO2 electrode was studied at various bias potential.A simplified equivalent circuit was proposed to investigate the charge transport impedance of TiO2 film and good fitting results were obtained.
文摘Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide xerogel films was simulated with an equivalent circuit model, which was derived from the mechanism of electrode reactions. Measured electrochemical impedance spectra at various electrode potentials were analyzed by using the complex non-linear least-squares fitting method. The results show that impedance spectra consist of 2 high-to- medium frequency depressed arcs and a low frequency straight line. The high frequency arc is attributed to the absorption reaction of lithium ions into the oxide film, the medium frequency arc is attributed to the charge transfer reaction at the vanadium oxide/electrolyte interface and the low frequency is characterized by a straight line with a phase angle of 45° corresponding to the diffusion of lithium ion through vanadium oxide phase. The experimental and calculated results are compared and discussed focusing on the electrochemical performance and the state of charge of the electrode. Moreover, the high consistence of the fitted values of the model to the experimental data indicates that this mathematical model does give a satisfying description of the intercalation process of vanadium pentoxide xerogel films.
文摘In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments.A number of different approaches,which differ even by the definition of the problem,are used in the literature.Some aimed towards finding an equivalent circuit.Others aimed towards finding directly dielectric properties of the material under an assumed model.Others towards finding distribution of relaxation times,either parametric or point-by point.No matter what the approach is,this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well.Therefore some a-priori knowledge about the system must he used.In addition,we should remember that the ultimate goal is to get physical insight about the system.
基金This work was supported by the National Natural Science Foundation of China the Science and Technology Foundation of Hunan P
文摘The electrochemical quartz crystal impedance system (EQCIS) has been used for the study of a partially immersed Au electrode in 0.2 mol/L NaClO4 aqueous solution. The influences of the immersed area and height of the electrode on the EQCIS responses were evaluated, showing the highest response sensitivity to liquid loading at the center of the piezoelectric quartz crystal electrode. The increase in the immersed height of the Au electrode at oxygen reduction potentials during potential cycling was measured by this technique.
文摘Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.
文摘The exact and approximate expressions for the field components of the TE modes in a sectoral waveguide are presented. Using the equivalence principle, the electric field distribution on the aperture surfaces of a narrow transverse slot cut in the curved broad wall of a sectoral waveguide is solved by the moment method (Galerkin's method). lmportant results such as the scattering parameter, the normalized equivalent series impedance, the resonant resistance and resonant length are studied.
基金supported by the Ministry of Education,Science,Research and Sport of the Slovak Republic under project No.313011V334,Innovative Solutions for Propulsion,Power and Safety Components of Transport Vehicles。
文摘Despite great progress in lithium-sulfur(Li-S) batteries, the electrochemical reactions in the cell are not yet fully understood. Electrode processes, complex interfaces and internal resistance may be characterized by electrochemical impedance spectroscopy(EIS). EIS is a non-destructive technique and easy to apply, though there are challenges in ensuring the reproducibility of measurements and the interpretation of impedance data. Here, we present the impedance behavior of a 3.4 Ah Li-S pouch cell characterized by EIS. The impedance changes were analyzed over the entire depth-of-discharge, depth-of-charge,and at various temperatures. Based on the formation of intermediates during(dis)charging, the changes of resistances are observed. Overall, the increase in temperature causes a decrease in electrolyte viscosity,lowering the surface energy which can improve the penetration of the electrolyte into the electrode pores. Moreover, the effect of superimposed AC current during EIS measurement was analyzed, and the results show the dependence of the charge transfer resistance on superimposed AC current which was lower compared to steady-state conditions and consents with theory.
文摘The AC impedance of amorphous-nano-crystalline silicon composite thin films (a-nc-Si:H) from mHz to MHz at different temperatures has been studied. The samples were prepared by Plasma Enhanced Chemical Vapor Deposition technique. The X-ray diffraction and high resolution electron microscopy showed that films consist of isolated nano-crystals embedded in amorphous matrix. In analysis of impedance data, two approaches were tested: the ideal Deby type equivalent circuit and modified one, with CPE (constant phase elements). It was found that the later better fits to results. The amorphous matrix showed larger resistance and lower capacity than nano-crystals. By heat treatment in vacuum, the capacity for both phases changes, according to expected change in size of ordered domains.
文摘周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利用单片机共时钟基准的模/数转换器(digital to analog convertor,DAC)与数/模转换器(analog to digital convertor,ADC)模块,在完成激励信号产生、输入输出信号同步采集的基础上,合理设计激励信号频率、采集频率与信号重构方法,实现高频信号单周期内均匀相位分布的等效高频采样,同时为克服常规A/D转换速度条件下难以准确实现高频阻抗谱测量的问题提供了新思路。从误差假设与拟合算法的角度,理论上分析证明了该方法降低误差的原因。并通过两种等效电路模型的阻抗谱测量对比实验,表明该方法在所设计的20~100 kHz高频段上,阻抗测量精度与稳定性得到了显著的提高。