期刊文献+
共找到8,636篇文章
< 1 2 250 >
每页显示 20 50 100
Real-Time Detection and Instance Segmentation of Strawberry in Unstructured Environment
1
作者 Chengjun Wang Fan Ding +4 位作者 Yiwen Wang Renyuan Wu Xingyu Yao Chengjie Jiang Liuyi Ling 《Computers, Materials & Continua》 SCIE EI 2024年第1期1481-1501,共21页
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r... The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot. 展开更多
关键词 YOLACT real-time detection instance segmentation attention mechanism STRAWBERRY
下载PDF
Real-Time Object Detection and Face Recognition Application for the Visually Impaired
2
作者 Karshiev Sanjar Soyoun Bang +1 位作者 SookheeRyue Heechul Jung 《Computers, Materials & Continua》 SCIE EI 2024年第6期3569-3583,共15页
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro... The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities. 展开更多
关键词 Artificial intelligence deep learning real-time object detection application
下载PDF
Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time
3
作者 Muhammad S.Alam Farhan B.Mohamed +2 位作者 Ali Selamat Faruk Ahmed AKM B.Hossain 《Intelligent Automation & Soft Computing》 2024年第3期417-436,共20页
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o... Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance. 展开更多
关键词 Camera pose estimation indoor camera localization real-time localization scene change detection simultaneous localization and mapping(SLAM)
下载PDF
A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
4
作者 Liang Liu Nan Yang +4 位作者 Saifei Liu Yuanyuan Cao Shuowen Tian Tiancheng Liu Xun Zhao 《Journal of Intelligent Learning Systems and Applications》 2024年第1期1-11,共11页
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m... Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection. 展开更多
关键词 real-time Mask Target CNN (Convolutional Neural Network) Single-Stage detection Multi-Scale Feature Perception
下载PDF
An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces
5
作者 Sheetal Sharma Kamali Gupta +2 位作者 DeepaliGupta Shalli Rani Gaurav Dhiman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2029-2059,共31页
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness... The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things. 展开更多
关键词 ERROR fault detection techniques sensor faults OUTLIERS Internet of Things
下载PDF
Optimizing Optical Fiber Faults Detection:A Comparative Analysis of Advanced Machine Learning Approaches
6
作者 Kamlesh Kumar Soothar Yuanxiang Chen +2 位作者 Arif Hussain Magsi Cong Hu Hussain Shah 《Computers, Materials & Continua》 SCIE EI 2024年第5期2697-2721,共25页
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o... Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics. 展开更多
关键词 Fiber optics fault detection multiclassification machine learning ensemble learning
下载PDF
Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines
7
作者 Hongjiang Wang Qingze Shen +3 位作者 Qin Dai Yingcai Gao Jing Gao Tian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期625-642,共18页
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ... Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1. 展开更多
关键词 Neural architecture search YOLOv8 evolutionary computation fault detection
下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
8
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic Panels fault detection Deep Learning Image Processing
下载PDF
Online Fault Monitoring of On-Load Tap-Changer Based on Voiceprint Detection
9
作者 Kitwa Henock Bondo 《Journal of Power and Energy Engineering》 2024年第3期48-59,共12页
The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj... The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies. 展开更多
关键词 Online fault Monitoring OLTC On-Load Tap Change Voiceprint detection
下载PDF
Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms
10
作者 Arsal Javaid Areeb Abbas +4 位作者 Jehangir Arshad Mohammad Khalid Imam Rahmani Sohaib Tahir Chauhdary Mujtaba Hussain Jaffery Abdulbasid S.Banga 《Computers, Materials & Continua》 SCIE EI 2023年第11期1795-1814,共20页
To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Susta... To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture. 展开更多
关键词 Posture detection FSR sensor machine learning real-time KNN
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
11
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 real-time health data monitoring Cache-Assisted real-time detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
LDA-ID:An LDA-Based Framework for Real-Time Network Intrusion Detection
12
作者 Weidong Zhou Shengwei Lei +1 位作者 Chunhe Xia Tianbo Wang 《China Communications》 SCIE CSCD 2023年第12期166-181,共16页
Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time ... Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time detection is an urgent problem.To address the two above problems,we propose a Latent Dirichlet Allocation topic model-based framework for real-time network Intrusion Detection(LDA-ID),consisting of static and online LDA-ID.The problem of feature overlap is transformed into static LDA-ID topic number optimization and topic selection.Thus,the detection is based on the latent topic features.To achieve efficient real-time detection,we design an online computing mode for static LDA-ID,in which a parameter iteration method based on momentum is proposed to balance the contribution of prior knowledge and new information.Furthermore,we design two matching mechanisms to accommodate the static and online LDA-ID,respectively.Experimental results on the public NSL-KDD and UNSW-NB15 datasets show that our framework gets higher accuracy than the others. 展开更多
关键词 feature overlap LDA-ID optimal topic number determination real-time intrusion detection
下载PDF
Portable FBAR based E-nose for cold chain real-time bananas shelf time detection
13
作者 Chen Wu Jiuyan Li 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期32-39,共8页
Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and... Being cheap,nondestructive,and easy to use,gas sensors play important roles in the food industry.However,most gas sensors are suitable more for laboratory-quality fast testing rather than for cold-chain continuous and cumulative testing.Also,an ideal electronic nose(E-nose)in a cold chain should be stable to its surroundings and remain highly accurate and portable.In this work,a portable film bulk acoustic resonator(FBAR)-based E-nose was built for real-time measurement of banana shelf time.The sensor chamber to contain the portable circuit of the E-nose is as small as a smartphone,and by introducing an air-tight FBAR as a reference,the E-nose can avoid most of the drift caused by surroundings.With the help of porous layer by layer(LBL)coating of the FBAR,the sensitivity of the E-nose is 5 ppm to ethylene and 0.5 ppm to isoamyl acetate and isoamyl butyrate,while the detection range is large enough to cover a relative humidity of 0.8.In this regard,the E-nose can easily discriminate between yellow bananas with green necks and entirely yellow bananas while allowing the bananas to maintain their biological activities in their normal storage state,thereby showing the possibility of real-time shelf time detection.This portable FBAR-based E-nose has a large testing scale,high sensitivity,good humidity tolerance,and low frequency drift to its surroundings,thereby meeting the needs of cold-chain usage. 展开更多
关键词 Film bulk acoustic resonator(FBAR) Portable E-nose real-time detection Layer by layer
下载PDF
Real-time fault detection method based on belief rule base for aircraft navigation system 被引量:14
14
作者 Zhao Xin Wang Shicheng +2 位作者 Zhang Jinsheng Fan Zhiliang Min Haibo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期717-729,共13页
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting ... Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement. 展开更多
关键词 Belief rule base fault detection fault tolerant control Integrated navigation Parameter recursive estimation algorithm
原文传递
NFA:A neural factorization autoencoder based online telephony fraud detection
15
作者 Abdul Wahid Mounira Msahli +1 位作者 Albert Bifet Gerard Memmi 《Digital Communications and Networks》 SCIE CSCD 2024年第1期158-167,共10页
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac... The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks. 展开更多
关键词 Telecom industry Streaming anomaly detection Fraud analysis Factorization machine real-time system Security
下载PDF
Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment
16
作者 Mohamed Zarouan Ibrahim M.Mehedi +1 位作者 Shaikh Abdul Latif Md.Masud Rana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1341-1364,共24页
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu... Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects. 展开更多
关键词 fault detection Industry 4.0 gradient optimizer algorithm deep learning rotating machineries artificial intelligence
下载PDF
Wavelet Denoising Applied to Hardware Redundant Systems for Rolling Element Bearing Fault Detection 被引量:1
17
作者 Dustin Helm Markus Timusk 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期133-143,共11页
This work presents a novel wavelet-based denoising technique for improving the signal-to-noise ratio(SNR)of nonsteady vibration signals in hardware redundant systems.The proposed method utilizes the relationship betwe... This work presents a novel wavelet-based denoising technique for improving the signal-to-noise ratio(SNR)of nonsteady vibration signals in hardware redundant systems.The proposed method utilizes the relationship between redundant hardware components to effectively separate fault-related components from the vibration signature,thus enhancing fault detection accuracy.The study evaluates the proposed technique on two mechanically identical subsystems that are simultaneously controlled under the same speed and load inputs,with and without the proposed denoising step.The results demonstrate an increase in detection accuracy when incorporating the proposed denoising method into a fault detection system designed for hardware redundant machinery.This work is original in its application of a new method for improving performance when using residual analysis for fault detection in hardware redundant machinery configurations.Moreover,the proposed methodology is applicable to nonstationary equipment that experiences changes in both speed and load. 展开更多
关键词 fault detection hardware redundancy VIBRATION wavelet denoising
下载PDF
Twin model-based fault detection and tolerance approach for in-core self-powered neutron detectors
18
作者 Jing Chen Yan-Zhen Lu +2 位作者 Hao Jiang Wei-Qing Lin Yong Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期86-99,共14页
The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SP... The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model. 展开更多
关键词 Self-powered neutron detector Twin model fault detection fault tolerance Generalized regression neural network Nuclear power plant
下载PDF
Milling Fault Detection Method Based on Fault Tree Analysis and Hierarchical Belief Rule Base
19
作者 Xiaoyu Cheng Mingxian Long +1 位作者 Wei He Hailong Zhu 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2821-2844,共24页
Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil... Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets. 展开更多
关键词 fault detection milling system belief rule base fault tree analysis evidence reasoning
下载PDF
A Convolutional Autoencoder Based Fault Detection Method for Metro Railway Turnout
20
作者 Chen Chen Xingqiu Li +2 位作者 Kai Huang Zhongwei Xu Meng Mei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期471-485,共15页
Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault ... Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault detection technology for railway turnout has become an important research topic.However,little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout.This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios.First,the one-dimensional original time-series signal is converted into a twodimensional image by data pre-processing and 2D representation.Next,a binary classification model based on the convolutional autoencoder is developed to implement fault detection.The profile and structure information can be captured by processing data as images.The performance of our method is evaluated and tested on real-world operational current data in themetro stations.Experimental results show that the proposedmethod achieves better performance,especially in terms of error rate and specificity,and is robust in practical engineering applications. 展开更多
关键词 Convolutional autoencoder fault detection metro railway turnout
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部