Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless contr...Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless control in fog computing. RT-Notification provides low-latency TDMA communication between an access point in Fog and a large number of portable monitoring devices equipped with sensor and actuator. RT-Notification differentiates two types of controls: urgent downlink actuator-oriented control and normal uplink access & scheduling control. Different from existing protocols, RT-Notification has two salient features:(i) support real-time notification of control frames, while not interrupting ongoing other transmissions, and(ii) support on-demand channel allocation for normal uplink access & scheduling control. RT-Notification can be implemented based on the commercial off-the-shelf 802.11 hardware. Our extensive simulations verify that RT-Notification is very effective in supporting the above two features.展开更多
Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is pro...Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is proposed for MPC, according to the solving process of quadratic programming (QP) problem. In this algorithm, system stability is guaranteed even when computation resource is not enough to finish optimization completely. By this kind of graceful degradation, the behavior of real-time control systems is still predictable and determinate. The algorithm is demonstrated by experiments on servomotor, and the simulation results show its effectiveness.展开更多
The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis s...The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using strata hierarchical fuzzy CMAC neural network. A framework of the fault diagnosis system is described. Hierarchical fault diagnostic structure is discussed in detail. The model of a novel fault diagnosis system by using fuzzy CMAC are built and analyzed. A case of the diagnosis is simulated. The results show that the real-time fault diagnostic system is of high accuracy, quick convergence, and high noise rejection. It is also found that this model is feasible in real-time fault diagnosis.展开更多
From the requirements of industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master...From the requirements of industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool ,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment, strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the real-time requirement of DC hoist,but also can give correct diagnosis results.展开更多
By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability ...By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.展开更多
Federated-learning-based active fault management(AFM)is devised to achieve real-time safety assurance for microgrids and the main grid during faults.AFM was originally formulated as a distributed optimization problem....Federated-learning-based active fault management(AFM)is devised to achieve real-time safety assurance for microgrids and the main grid during faults.AFM was originally formulated as a distributed optimization problem.Here,federated learning is used to train each microgrid’s network with training data achieved from distributed optimization.The main contribution of this work is to replace the optimization-based AFM control algorithm with a learning-based AFM control algorithm.The replacement transfers computation from online to offline.With this replacement,the control algorithm can meet real-time requirements for a system with dozens of microgrids.By contrast,distributed-optimization-based fault management can output reference values fast enough for a system with several microgrids.More microgrids,however,lead to more computation time with optimization-based method.Distributed-optimization-based fault management would fail real-time requirements for a system with dozens of microgrids.Controller hardware-in-the-loop real-time simulations demonstrate that learning-based AFM can output reference values within 10 ms irrespective of the number of microgrids.展开更多
Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fa...Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.展开更多
Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tas...Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tasks effectively meet the deadline,it means the system is working in pristine order.However,missing the deadline means a systemic fault due to which the system can crash(hard RTS)or degrade inclusive performance(soft RTS).To fine-tune the RTS,tolerance is the critical issue and must be handled with extreme care.This article explains the context of fault tolerance with improvised Joint EDF-RMS algorithm in RTS.The backup method has been derived to prevent the system from being recursively migrating the same task.If any task migrates three times,this migrated task will get shifted to the backup queue.This backup queue assigns the task to a backup processor and is destined for final execution.For performance evaluation purposes,a relative graph between fault and failure rates,failure and total processor utilization along with other averages have been evaluated.Furthermore,these archived results are compared with fault-tolerant Earliest Deadline First(EDF)and Rate Monotonic Scheduling(RMS)algorithms independently in relatively similar conditions.These comparisons show better performance against overloading conditions.展开更多
For the purpose of motor fault real-time monitoring, this research developed a nano-silicon ni- tride film based magnetic field (MF) sensor, and applied this sensor in MF detection of two common faults. Through experi...For the purpose of motor fault real-time monitoring, this research developed a nano-silicon ni- tride film based magnetic field (MF) sensor, and applied this sensor in MF detection of two common faults. Through experiment, it turned out that arc discharge and slot discharge occur in motor fault produce MF with certain laws. This result proved the feasibility of the sensor and sensing method in MF analysis, and revealed possibility of a new method in fault detection.展开更多
The faults in switched reluctance motors(SRMs) were detected and diagnosed in real time with the Kohonen neural network. When a fault happens, both financial losses and undesired situations may occur. For these reason...The faults in switched reluctance motors(SRMs) were detected and diagnosed in real time with the Kohonen neural network. When a fault happens, both financial losses and undesired situations may occur. For these reasons, it is important to detect the incipient faults of SRMs and to diagnose which faults have occurred. In this study, a test rig was realized to determine the healthy and faulty conditions of SRMs. A data set for the Kohonen neural network was created with implemented measurements. A graphical user interface(GUI) was created in Matlab to test the performance of the Kohonen artificial neural network in real time. The data of the SRM was transferred to this software with a data acquisition card. The condition of the motor was monitored by marking the data measured in real time on the weight position graph of the Kohonen neural network. This test rig is capable of real-time monitoring of the condition of SRMs, which are used with intermittent or continuous operation, and is capable of detecting and diagnosing the faults that may occur in the motor. The Kohonen neural network used for detection and diagnosis of faults of the SRM in real time with Matlab GUI was embedded in an STM32 processor. A prototype with the STM32 processor was developed to detect and diagnose the faults of SRMs independent of computers.展开更多
Sub-tanks in fuel tank systems of aircrafts transfer fuel to engines in certain order. These sub-tanks and attached tank-accessories affect each other, and make fault diagnosis in such systems rather difficult. Withou...Sub-tanks in fuel tank systems of aircrafts transfer fuel to engines in certain order. These sub-tanks and attached tank-accessories affect each other, and make fault diagnosis in such systems rather difficult. Without real measured data, this paper analyzes fault modes and fault effects of the fuel tank system, including its tankaccessories, of a given aircraft. Fault model of the system is built theoretically, and fault diagnosis criteria are deduced. Such criteria are then quantified to train a back propagation neural network(BPNN) as fault diagnosis model. To realize fault diagnosis of the real fuel tank system, a real-time fault diagnosis platform based on Lab View and Vx Works to perform this diagnosis method is discussed. This platform is a technical groundwork for fault diagnosis in real fuel tank systems.展开更多
Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obt...Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obtained through analyzing the certainty and uncertainty of fuzzy membership functions,which were designed based on well-known Hamming distance.It was applied to the fault detection of primary control surface stuck of uninhabited aerial vehicle(UAV).At post-failure control surface,if the UAV is controllable and trimmable using other control surfaces,the UAV is able to fly or return to the safety region through reconfiguration of flight control system.To detect the fault,similarity measure computations were carried out.This result could be applicable with the real-time parameter estimation method.By monitoring the value of coefficients due to the control surface deviation,it becomes aware that the control surface fault occurs or not.The control surface stuck position and value were separated by comparing the trim value with the reference value.This is the advantage of increasing in reliability without adding sensors or with additional low cost.展开更多
基金supported by Macao FDCTMOST grant001/2015/AMJMacao FDCT grants 005/2016/A1, and 056/2017/A2
文摘Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless control in fog computing. RT-Notification provides low-latency TDMA communication between an access point in Fog and a large number of portable monitoring devices equipped with sensor and actuator. RT-Notification differentiates two types of controls: urgent downlink actuator-oriented control and normal uplink access & scheduling control. Different from existing protocols, RT-Notification has two salient features:(i) support real-time notification of control frames, while not interrupting ongoing other transmissions, and(ii) support on-demand channel allocation for normal uplink access & scheduling control. RT-Notification can be implemented based on the commercial off-the-shelf 802.11 hardware. Our extensive simulations verify that RT-Notification is very effective in supporting the above two features.
文摘Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is proposed for MPC, according to the solving process of quadratic programming (QP) problem. In this algorithm, system stability is guaranteed even when computation resource is not enough to finish optimization completely. By this kind of graceful degradation, the behavior of real-time control systems is still predictable and determinate. The algorithm is demonstrated by experiments on servomotor, and the simulation results show its effectiveness.
文摘The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using strata hierarchical fuzzy CMAC neural network. A framework of the fault diagnosis system is described. Hierarchical fault diagnostic structure is discussed in detail. The model of a novel fault diagnosis system by using fuzzy CMAC are built and analyzed. A case of the diagnosis is simulated. The results show that the real-time fault diagnostic system is of high accuracy, quick convergence, and high noise rejection. It is also found that this model is feasible in real-time fault diagnosis.
文摘From the requirements of industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool ,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment, strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the real-time requirement of DC hoist,but also can give correct diagnosis results.
基金The National Natural Science Foundationof China(No.60873030 )the National High-Tech Research and Development Plan of China(863 Program)(No.2007AA01Z309)
文摘By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The scbedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT + EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.
基金supported in part by the National Science Foundation under Grants No.OIA-2134840 and ECCS-1810108in part by Department of Energy under Grant No.DE-EE0009341Department of Navy award N00014-20-1-2858 issued by the Office of Naval Research.
文摘Federated-learning-based active fault management(AFM)is devised to achieve real-time safety assurance for microgrids and the main grid during faults.AFM was originally formulated as a distributed optimization problem.Here,federated learning is used to train each microgrid’s network with training data achieved from distributed optimization.The main contribution of this work is to replace the optimization-based AFM control algorithm with a learning-based AFM control algorithm.The replacement transfers computation from online to offline.With this replacement,the control algorithm can meet real-time requirements for a system with dozens of microgrids.By contrast,distributed-optimization-based fault management can output reference values fast enough for a system with several microgrids.More microgrids,however,lead to more computation time with optimization-based method.Distributed-optimization-based fault management would fail real-time requirements for a system with dozens of microgrids.Controller hardware-in-the-loop real-time simulations demonstrate that learning-based AFM can output reference values within 10 ms irrespective of the number of microgrids.
文摘Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.
基金Deepak Dahiya would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2022-56.
文摘Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tasks effectively meet the deadline,it means the system is working in pristine order.However,missing the deadline means a systemic fault due to which the system can crash(hard RTS)or degrade inclusive performance(soft RTS).To fine-tune the RTS,tolerance is the critical issue and must be handled with extreme care.This article explains the context of fault tolerance with improvised Joint EDF-RMS algorithm in RTS.The backup method has been derived to prevent the system from being recursively migrating the same task.If any task migrates three times,this migrated task will get shifted to the backup queue.This backup queue assigns the task to a backup processor and is destined for final execution.For performance evaluation purposes,a relative graph between fault and failure rates,failure and total processor utilization along with other averages have been evaluated.Furthermore,these archived results are compared with fault-tolerant Earliest Deadline First(EDF)and Rate Monotonic Scheduling(RMS)algorithms independently in relatively similar conditions.These comparisons show better performance against overloading conditions.
文摘For the purpose of motor fault real-time monitoring, this research developed a nano-silicon ni- tride film based magnetic field (MF) sensor, and applied this sensor in MF detection of two common faults. Through experiment, it turned out that arc discharge and slot discharge occur in motor fault produce MF with certain laws. This result proved the feasibility of the sensor and sensing method in MF analysis, and revealed possibility of a new method in fault detection.
基金Project(No.KBü-BAP-C-11-D-003)supported by the Karabük University BAP Unit,Turkey
文摘The faults in switched reluctance motors(SRMs) were detected and diagnosed in real time with the Kohonen neural network. When a fault happens, both financial losses and undesired situations may occur. For these reasons, it is important to detect the incipient faults of SRMs and to diagnose which faults have occurred. In this study, a test rig was realized to determine the healthy and faulty conditions of SRMs. A data set for the Kohonen neural network was created with implemented measurements. A graphical user interface(GUI) was created in Matlab to test the performance of the Kohonen artificial neural network in real time. The data of the SRM was transferred to this software with a data acquisition card. The condition of the motor was monitored by marking the data measured in real time on the weight position graph of the Kohonen neural network. This test rig is capable of real-time monitoring of the condition of SRMs, which are used with intermittent or continuous operation, and is capable of detecting and diagnosing the faults that may occur in the motor. The Kohonen neural network used for detection and diagnosis of faults of the SRM in real time with Matlab GUI was embedded in an STM32 processor. A prototype with the STM32 processor was developed to detect and diagnose the faults of SRMs independent of computers.
文摘Sub-tanks in fuel tank systems of aircrafts transfer fuel to engines in certain order. These sub-tanks and attached tank-accessories affect each other, and make fault diagnosis in such systems rather difficult. Without real measured data, this paper analyzes fault modes and fault effects of the fuel tank system, including its tankaccessories, of a given aircraft. Fault model of the system is built theoretically, and fault diagnosis criteria are deduced. Such criteria are then quantified to train a back propagation neural network(BPNN) as fault diagnosis model. To realize fault diagnosis of the real fuel tank system, a real-time fault diagnosis platform based on Lab View and Vx Works to perform this diagnosis method is discussed. This platform is a technical groundwork for fault diagnosis in real fuel tank systems.
基金Project(20110018394) supported by Key Research Institute Program through the National Research Foundation (NRF) of Korea
文摘Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obtained through analyzing the certainty and uncertainty of fuzzy membership functions,which were designed based on well-known Hamming distance.It was applied to the fault detection of primary control surface stuck of uninhabited aerial vehicle(UAV).At post-failure control surface,if the UAV is controllable and trimmable using other control surfaces,the UAV is able to fly or return to the safety region through reconfiguration of flight control system.To detect the fault,similarity measure computations were carried out.This result could be applicable with the real-time parameter estimation method.By monitoring the value of coefficients due to the control surface deviation,it becomes aware that the control surface fault occurs or not.The control surface stuck position and value were separated by comparing the trim value with the reference value.This is the advantage of increasing in reliability without adding sensors or with additional low cost.