期刊文献+
共找到9,276篇文章
< 1 2 250 >
每页显示 20 50 100
GP‐FMLNet:A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis
1
作者 Jing Li Dezheng Zhang +2 位作者 Yonghong Xie Aziguli Wulamu Yao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期960-972,共13页
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin... Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms. 展开更多
关键词 aspect‐level sentiment analysis deep learning feature extraction glyph and phonetic feature matrix compound learning
下载PDF
MAIPFE:An Efficient Multimodal Approach Integrating Pre-Emptive Analysis,Personalized Feature Selection,and Explainable AI
2
作者 Moshe Dayan Sirapangi S.Gopikrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2229-2251,共23页
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu... Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world. 展开更多
关键词 Predictive health modeling Medical Internet of Things explainable artificial intelligence personalized feature selection preemptive analysis
下载PDF
Simulation Method and Feature Analysis of Shutdown Pressure Evolution During Multi-Cluster Fracturing Stimulation
3
作者 Huaiyin He Longqing Zou +5 位作者 Yanchao Li Yixuan Wang Junxiang Li Huan Wen Bei Chang Lijun Liu 《Energy Engineering》 EI 2024年第1期111-123,共13页
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a... Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters. 展开更多
关键词 Multistage multi-cluster hydraulic fracturing pump shutdown pressure feature analysis numerical simulation
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
4
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security Network Security Cyber Resilience real-time Threat analysis Cyber Threats Cyberattacks Threat Intelligence Machine Learning Artificial Intelligence Threat Detection Threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure Data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat Modeling Security Architecture
下载PDF
Real-Time Multimodal Biometric Authentication of Human Using Face Feature Analysis 被引量:1
5
作者 Rohit Srivastava Ravi Tomar +3 位作者 Ashutosh Sharma Gaurav Dhiman Naveen Chilamkurti Byung-Gyu Kim 《Computers, Materials & Continua》 SCIE EI 2021年第10期1-19,共19页
As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their characte... As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images. 展开更多
关键词 BIOMETRICS real-time multimodal biometrics real-time face recognition feature analysis
下载PDF
Clinical features and prognostic factors in 49 patients with follicular lymphoma at a single center:A retrospective analysis 被引量:1
6
作者 Hao Wu Hui-Cong Sun Gui-Fang Ouyang 《World Journal of Clinical Cases》 SCIE 2023年第14期3176-3186,共11页
BACKGROUND Follicular lymphoma(FL)is a type of B-cell lymphoma that originates at the germinal center and has a low malignancy rate.FL has become the most common inert lymphoma in Europe and America but has a relative... BACKGROUND Follicular lymphoma(FL)is a type of B-cell lymphoma that originates at the germinal center and has a low malignancy rate.FL has become the most common inert lymphoma in Europe and America but has a relatively low incidence in Asia.AIM To explore the clinical features,curative effects,and prognostic factors of FL.METHODS Completed medical records of 49 patients with FL who were admitted to the Ningbo First Hospital from June 2010 to June 2021 were examined.These patients were definitively diagnosed by pathological biopsy or immunohistochemical staining.The diagnostic criteria were based on the 2008 World Health Organization classification of lymphomas.Ann Arbor staging was performed according to the imaging and bone marrow examination results.Risk stratification of all patients was performed based on the International Prognostic Index(IPI),age-adjusted IPI,Follicular Lymphoma International Prognosis Index(FLIPI),and FLIPI2 to compare the efficacy of different treatment regimens and analyze the related prognostic factors.RESULTS The age of onset in patients ranged from 24 to 76 years,with a median age of 51 years.Most patients developed the disease at 40–59 years of age,and the male:female ratio was 1.6:1.No significant difference was noted in the curative effect between the non-chemotherapy,combined chemotherapy,and other chemotherapy regimens(P>0.05).Hemoglobin(Hb)level<120 g/L,Ki-67 value>50%,bone marrow involvement,and clinical stagesⅢ–IV were associated with a poor prognosis of FL(P<0.05).However,the influence of other indicators was not statistically significant.Risk grouping was performed using the FLIPI,and the results showed that 24.5%,40.8%,and 34.7%of patients were in the low-,moderate-,and high-risk groups,respectively.According to the survival analysis results,the survival rate of patients was lower in the high-risk group than in the other low-risk and moderate-risk groups(P<0.05).CONCLUSION FL mainly occurs in middle-aged and elderly men,primarily affecting lymph nodes and bone marrow.Hb level,Ki-67 value,bone marrow involvement,and clinical staging were used to evaluate prognosis. 展开更多
关键词 Follicular lymphoma Clinical feature Curative effect PROGNOSIS Survival analysis Follicular Lymphoma International Prognosis Index
下载PDF
Analysis of clinicopathological features and prognostic factors of breast cancer brain metastasis 被引量:3
7
作者 Yu-Rui Chen Zu-Xin Xu +4 位作者 Li-Xin Jiang Zhi-Wei Dong Peng-Fei Yu Zhi Zhang Guo-Li Gu 《World Journal of Clinical Oncology》 2023年第11期445-458,共14页
BACKGROUND Breast cancer(BC)has become the most common malignancy in women.The incidence and detection rates of BC brain metastasis(BCBM)have increased with the progress of imaging,multidisciplinary treatment techniqu... BACKGROUND Breast cancer(BC)has become the most common malignancy in women.The incidence and detection rates of BC brain metastasis(BCBM)have increased with the progress of imaging,multidisciplinary treatment techniques and the extension of survival time of BC patients.BM seriously affects the quality of life and survival prognosis of BC patients.Therefore,clinical research on the clinicopathological features and prognostic factors of BCBM is valuable.By analyzing the clinicopathological parameters of BCBM patients,and assessing the risk factors and prognostic indicators,we can perform hierarchical diagnosis and treatment on the high-risk population of BCBM,and achieve clinical benefits of early diagnosis and treatment.AIM To explore the clinicopathological features and prognostic factors of BCBM,and provide references for diagnosis,treatment and management of BCBM.METHODS The clinicopathological data of 68 BCBM patients admitted to the Air Force Medical Center,Chinese People’s Liberation Army(formerly Air Force General Hospital)from 2000 to 2022 were collected.Another 136 BC patients without BM were matched at a ratio of 1:2 based on the age and site of onset for retrospective analysis.Categorical data were subjected to χ^(2) test or Fisher’s exact probability test,and the variables with P<0.05 in the univariate Cox proportional hazards model were incorporated into the multivariate model to identify high-risk factors and independent prognostic factors of BCBM,with a hazard ratio(HR)>1 suggesting poor prognostic factors.The survival time of patients was estimated by the Kaplan-Meier method,and overall survival was compared between groups by log-rank test.RESULTS Multivariate Cox regression analysis showed that patients with stage Ⅲ/Ⅳ tumor at initial diagnosis[HR:5.58,95% confidence interval(CI):1.99–15.68],lung metastasis(HR:24.18,95%CI:6.40-91.43),human epidermal growth factor receptor 2(HER2)-overexpressing BC and triple-negative BC were more prone to BM.As can be seen from the prognostic data,52 of the 68 BCBM patients had died by the end of follow-up,and the median time from diagnosis of BC to the occurrence of BM and from the occurrence of BM to death or last follow-up was 33.5 and 14 mo,respectively.It was confirmed by multivariate Cox regression analysis that patients with neurological symptoms(HR:1.923,95%CI:1.005-3.680),with bone metastasis(HR:2.011,95%CI:1.056-3.831),and BM of HER2-overexpressing and triple-negative BC had shorter survival time.CONCLUSION HER2-overexpressing,triple-negative BC,late tumor stage and lung metastasis are risk factors of BM.The presence of neurological symptoms,bone metastasis,and molecular type are influencing prognosis factors of BCBM. 展开更多
关键词 Breast cancer Brain metastasis Clinicopathological features High-risk factors Prognostic analysis
下载PDF
SA-MSVM:Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter
8
作者 C.P.Thamil Selvi R.PushpaLaksmi 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2439-2456,共18页
One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about ... One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about products,persons,initiatives,political issues,research achievements,and entertainment are discussed on social websites.The unique data analytics method cannot be applied to various social websites since the data formats are different.Several approaches,techniques,and tools have been used for big data analytics,opinion mining,or sentiment analysis,but the accuracy is yet to be improved.The proposed work is motivated to do sentiment analysis on Twitter data for cloth products using Simulated Annealing incorporated with the Multiclass Support Vector Machine(SA-MSVM)approach.SA-MSVM is a hybrid heuristic approach for selecting and classifying text-based sentimental words following the Natural Language Processing(NLP)process applied on tweets extracted from the Twitter dataset.A simulated annealing algorithm searches for relevant features and selects and identifies sentimental terms that customers criticize.SA-MSVM is implemented,experimented with MATLAB,and the results are verified.The results concluded that SA-MSVM has more potential in sentiment analysis and classification than the existing Support Vector Machine(SVM)approach.SA-MSVM has obtained 96.34%accuracy in classifying the product review compared with the existing systems. 展开更多
关键词 Bigdata analytics Twitter dataset for cloth product heuristic approaches sentiment analysis feature selection classification
下载PDF
Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis
9
作者 Ierin Babu R.MathuSoothana S.Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3621-3636,共16页
Educational Data Mining(EDM)is an emergent discipline that concen-trates on the design of self-learning and adaptive approaches.Higher education institutions have started to utilize analytical tools to improve student... Educational Data Mining(EDM)is an emergent discipline that concen-trates on the design of self-learning and adaptive approaches.Higher education institutions have started to utilize analytical tools to improve students’grades and retention.Prediction of students’performance is a difficult process owing to the massive quantity of educational data.Therefore,Artificial Intelligence(AI)techniques can be used for educational data mining in a big data environ-ment.At the same time,in EDM,the feature selection process becomes necessary in creation of feature subsets.Since the feature selection performance affects the predictive performance of any model,it is important to elaborately investigate the outcome of students’performance model related to the feature selection techni-ques.With this motivation,this paper presents a new Metaheuristic Optimiza-tion-based Feature Subset Selection with an Optimal Deep Learning model(MOFSS-ODL)for predicting students’performance.In addition,the proposed model uses an isolation forest-based outlier detection approach to eliminate the existence of outliers.Besides,the Chaotic Monarch Butterfly Optimization Algo-rithm(CBOA)is used for the selection of highly related features with low com-plexity and high performance.Then,a sailfish optimizer with stacked sparse autoencoder(SFO-SSAE)approach is utilized for the classification of educational data.The MOFSS-ODL model is tested against a benchmark student’s perfor-mance data set from the UCI repository.A wide-ranging simulation analysis por-trayed the improved predictive performance of the MOFSS-ODL technique over recent approaches in terms of different measures.Compared to other methods,experimental results prove that the proposed(MOFSS-ODL)classification model does a great job of predicting students’academic progress,with an accuracy of 96.49%. 展开更多
关键词 Students’performance analysis educational data mining feature selection deep learning metaheuristics outlier detection
下载PDF
A Single Feasibility Study of System Multi-feature Analysis and Evaluation Tool Based on AADL Model
10
作者 FENG Guangding MENG Bo XIANG Yangkui 《International Journal of Plant Engineering and Management》 2023年第4期193-212,共20页
The tool for analyzing and evaluating system characteristics based on the AADL model can achieve real-time,reliability,security,and schedulability analysis and evaluation for software-intensive systems.It provides a c... The tool for analyzing and evaluating system characteristics based on the AADL model can achieve real-time,reliability,security,and schedulability analysis and evaluation for software-intensive systems.It provides a complete solution for quality analysis of real-time,reliability,safety,and schedulability in the design and demonstration stages of software-intensive systems.By using the system′s multi-characteristic(real-time capability,reliability,safety,schedulability)analysis and evaluation tool based on AADL models,it can meet the software non-functional requirements stipulated by the existing model development standards and specifications.This effectively enhances the efficiency of demonstrating the compliance of the system′s non-functional quality attributes in the design work of our unit′s software-intensive system.It can also improve the performance of our unit′s software-intensive system in engineering inspections and requirement reviews conducted by various organizations.The improvement in the quality level of software-intensive systems can enhance the market competitiveness of our unit′s electronic products. 展开更多
关键词 IMA multi⁃feature analysis AADL analysis tool
下载PDF
Feature extraction and damage alarming using time series analysis 被引量:4
11
作者 刘毅 李爱群 +1 位作者 费庆国 丁幼亮 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期86-91,共6页
Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis i... Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM. 展开更多
关键词 feature extraction damage alarming time series analysis structural health monitoring
下载PDF
Curve Classification Based onMean-Variance Feature Weighting and Its Application
12
作者 Zewen Zhang Sheng Zhou Chunzheng Cao 《Computers, Materials & Continua》 SCIE EI 2024年第5期2465-2480,共16页
The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to a... The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy.In this paper,we propose a mean-variance-based(MV)feature weighting method for classifying functional data or functional curves.In the feature extraction stage,each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis.After that,a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients.We also introduce a scaling parameter to adjust the gap between the weights of features.The new feature weighting approach can adaptively enhance noteworthy local features while mitigating the impact of confusing features.The algorithms for feature weighted K-nearest neighbor and support vector machine classifiers are both provided.Moreover,the new approach can be well integrated into existing functional data classifiers,such as the generalized functional linear model and functional linear discriminant analysis,resulting in a more accurate classification.The performance of the mean-variance-based classifiers is evaluated by simulation studies and real data.The results show that the newfeatureweighting approach significantly improves the classification accuracy for complex functional data. 展开更多
关键词 Functional data analysis CLASSIFICATION feature weighting B-SPLINES
下载PDF
Relationships between Terrain Features and Forecasting Errors of Surface Wind Speeds in a Mesoscale Numerical Weather Prediction Model
13
作者 Wenbo XUE Hui YU +1 位作者 Shengming TANG Wei HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1161-1170,共10页
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM... Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study. 展开更多
关键词 surface wind speed terrain features error analysis MOS calibration model
下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
14
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 Data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers feature selection
下载PDF
Clinicopathological analysis of small intestinal metastasis from extra-abdominal/extra-pelvic malignancy
15
作者 Zhi Zhang Jing Liu +5 位作者 Peng-Fei Yu Hai-Rui Yang Jin-Yang Li Zhi-Wei Dong Wei Shi Guo-Li Gu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第10期4138-4145,共8页
BACKGROUND The metastatic tumors in the small intestine secondary to extra-abdominal/extrapelvic malignancy are extremely rare.However,the small intestine metastases are extremely prone to misdiagnosis and missed diag... BACKGROUND The metastatic tumors in the small intestine secondary to extra-abdominal/extrapelvic malignancy are extremely rare.However,the small intestine metastases are extremely prone to misdiagnosis and missed diagnosis due to the lack of specific clinical manifestations and examination methods,thus delaying its treatment.Therefore,in order to improve clinical diagnosis and treatment capabilities,it is necessary to summarize its clinical pathological characteristics and prognosis.AIM To summarize the clinicopathological characteristics of patients with small intestinal metastases from extra-abdominal/extra-pelvic malignancy,and to improve the clinical capability of diagnosis and treatment for rare metastatic tumors in the small intestine.METHODS The clinical data of patients with small intestinal metastases from extra-abdominal/extra-pelvic malignancy were retrieved and summarized,who admitted to and treated in the Air Force Medical Center,Chinese People’s Liberation Army.Then descriptive statistics were performed on the general conditions,primary tumors,secondary tumors in the small intestine,diagnosis and treatment processes,and prognosis.RESULTS Totally 11 patients(9 males and 2 females)were enrolled in this study,including 8 cases(72.3%)of primary lung cancer,1 case(9.1%)of malignant lymphoma of the thyroid,1 case(9.1%)of cutaneous malignant melanoma,and 1 case(9.1%)of testicular cancer.The median age at the diagnosis of primary tumors was 57.9 years old,the median age at the diagnosis of metastatic tumors in the small intestine was 58.81 years old,and the average duration from initial diagnosis of primary tumors to definite diagnosis of small intestinal metastases was 9 months(0-36 months).Moreover,small intestinal metastases was identified at the diagnosis of primary tumors in 4 cases.The small intestinal metastases were distributed in the jejunum and ileum,with such clinical manifestations as hematochezia(5,45.4%)and abdominal pain,vomiting and other obstruction(4,36.4%).In addition,2 patients had no obvious symptoms at the diagnosis of small intestinal metastases,and 5 patients underwent radical resection of small intestinal malignancies and recovered well after surgery.A total of 3 patients did not receive subsequent treatment due to advanced conditions.CONCLUSION Small intestinal metastases of extra-abdominal/extra-pelvic malignancy is rare with high malignancy and great difficulty in diagnosis and treatment.Clinically,patients with extra-abdominal/extra-pelvic malignancy should be alert to the occurrence of this disease,and their prognosis may be improved through active surgery combined with standard targeted therapy. 展开更多
关键词 Small intestinal METASTASES Clinicopathological features Prognostic analysis MALIGNANCY
下载PDF
An intelligent prediction model of epidemic characters based on multi-feature
16
作者 Xiaoying Wang Chunmei Li +6 位作者 Yilei Wang Lin Yin Qilin Zhou Rui Zheng Qingwu Wu Yuqi Zhou Min Dai 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期595-607,共13页
The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epi... The epidemic characters of Omicron(e.g.large-scale transmission)are significantly different from the initial variants of COVID-19.The data generated by large-scale transmission is important to predict the trend of epidemic characters.However,the re-sults of current prediction models are inaccurate since they are not closely combined with the actual situation of Omicron transmission.In consequence,these inaccurate results have negative impacts on the process of the manufacturing and the service industry,for example,the production of masks and the recovery of the tourism industry.The authors have studied the epidemic characters in two ways,that is,investigation and prediction.First,a large amount of data is collected by utilising the Baidu index and conduct questionnaire survey concerning epidemic characters.Second,theβ-SEIDR model is established,where the population is classified as Susceptible,Exposed,Infected,Dead andβ-Recovered persons,to intelligently predict the epidemic characters of COVID-19.Note thatβ-Recovered persons denote that the Recovered persons may become Sus-ceptible persons with probabilityβ.The simulation results show that the model can accurately predict the epidemic characters. 展开更多
关键词 artificial intelligence big data data analysis evaluation feature extraction intelligent information processing medical applications
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
17
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis
18
作者 Xin Fan Shuqing Zhang +2 位作者 Kaisheng Wu Wei Zheng Yu Ge 《Computers, Materials & Continua》 SCIE EI 2024年第2期1687-1711,共25页
Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consi... Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consider linear correlations between features(indicators)of the source and target projects.These models are not capable of evaluating non-linear correlations between features when they exist,for example,when there are differences in data distributions between the source and target projects.As a result,the performance of such CPDP models is compromised.In this paper,this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique(SMOTE)and Deep Canonical Correlation Analysis(DCCA),referred to as S-DCCA.Canonical Correlation Analysis(CCA)is employed to address the issue of non-linear correlations between features of the source and target projects.S-DCCA extends CCA by incorporating the MlpNet model for feature extraction from the dataset.The redundant features are then eliminated by maximizing the correlated feature subset using the CCA loss function.Finally,cross-project defect prediction is achieved through the application of the SMOTE data sampling technique.Area Under Curve(AUC)and F1 scores(F1)are used as evaluation metrics.This paper conducted experiments on 27 projects from four public datasets to validate the proposed method.The results demonstrate that,on average,our method outperforms all baseline approaches by at least 1.2%in AUC and 5.5%in F1 score.This indicates that the proposed method exhibits favorable performance characteristics. 展开更多
关键词 Cross-project defect prediction deep canonical correlation analysis feature similarity
下载PDF
Aspect-Level Sentiment Analysis Based on Deep Learning
19
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 Aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
Research on Multi-Core Processor Analysis for WCET Estimation
20
作者 LUO Haoran HU Shuisong +2 位作者 WANG Wenyong TANG Yuke ZHOU Junwei 《ZTE Communications》 2024年第1期87-94,共8页
Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardwar... Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardware system.This literature review focuses on calculating WCET for multi-core processors,providing a survey of traditional methods used for static and dynamic analysis and highlighting the major challenges that arise from different program execution scenarios on multi-core platforms.This paper outlines the strengths and weaknesses of current methodologies and offers insights into prospective areas of research on multi-core analysis.By presenting a comprehensive analysis of the current state of research on multi-core processor analysis for WCET estimation,this review aims to serve as a valuable resource for researchers and practitioners in the field. 展开更多
关键词 real-time system worst-case execution time(WCET) multi-core analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部