A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err...A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.展开更多
A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising i...A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.展开更多
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article...Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.展开更多
Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events aft...Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events after Asia and Europe. Eastern Africa is the most hit in Africa. However, Africa continent is at the early stage in term of flood forecasting models development and implementation. Very few hydrological models for flood forecasting are available and implemented in Africa for the flood mitigation. And for the majority of the cases, they need to be improved because of the time evolution. Flash flood in Bamako (Mali) has been putting both human life and the economy in jeopardy. Studying this phenomenon, as to propose applicable solutions for its alleviation in Bamako is a great concern. Therefore, it is of upmost importance to know the existing scientific works related to this situation in Mali and elsewhere. The main aim was to point out the various solutions implemented by various local and international institutions, in order to fight against the flood events. Two types of methods are used for the flood events adaptation: the structural and non-structural methods. The structural methods are essentially based on the implementation of the structures like the dams, dykes, levees, etc. The problem of these methods is that they may reduce the volume of water that will inundate the area but are not efficient for the prediction of the coming floods and cannot alert the population with any lead time in advance. The non-structural methods are the one allowing to perform the prediction with acceptable lead time. They used the hydrological rainfall-runoff models and are the widely methods used for the flood adaptation. This review is more accentuated on the various types non-structural methods and their application in African countries in general and West African countries in particular with their strengths and weaknesses. Hydrologiska Byråns Vattenbalansavdelning (HBV), Hydrologic Engineer Center Hydrologic Model System (HEC-HMS) and Soil and Water Assessment Tool (SWAT) are the hydrological models that are the most widely used in West Africa for the purpose of flood forecasting. The easily way of calibration and the weak number of input data make these models appropriate for the West Africa region where the data are scarce and often with bad quality. These models when implemented and applied, can predict the coming floods, allow the population to adapt and mitigate the flood events and reduce considerably the impacts of floods especially in terms of loss of life.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu...A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.展开更多
Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin...Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.展开更多
The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 flo...The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 floods 14 are due to intercepted catchment contribution. The existing flood forecasting systems are mostly for upstream catchment, forecasting the inflow to reservoir, whereas the downstream catchment is devoid of a sound flood forecasting system. Therefore, in this study an attempt has been made to develop a workable forecasting system for downstream catchment. Instead of taking the flow time series concurrent flood peaks of 12 years of base and forecasting stations with its corresponding travel time are considered for analysis. Both statistical method and ANN based approach are considered for finding the peak to reach at delta head with its corresponding travel time. The travel time has been finalized adopting clustering techniques, there by differentiating high, medium and low peaks. The method is simple and it does not take into consideration the rainfall and other factors in the intercepted catchment. A comparison between both methods are tested and it is found that the ANN methods are better beyond the calibration range over statistical method and the efficiency of either methods reduces as the prediction reach is extended. However, it is able to give the peak discharge at delta head before 24 hour to 37 hour for high to low peaks.展开更多
Riverine flood event situation awareness and emergency management decision support systems require accurate and scalable geoanalytic data at the local level. This paper introduces the Water-flow Visualization Enhancem...Riverine flood event situation awareness and emergency management decision support systems require accurate and scalable geoanalytic data at the local level. This paper introduces the Water-flow Visualization Enhancement (WaVE), a new framework and toolset that integrates enhanced geospatial analytics visualization (common operating picture) and decision support modular tools. WaVE enables users to: 1) dynamically generate on-the-fly, highly granular and interactive geovisual real-time and predictive flood maps that can be scaled down to show discharge, inundation, water velocity, and ancillary geomorphology and hydrology data from the national level to regional and local level;2) integrate data and model analysis results from multiple sources;3) utilize machine learning correlation indexing to interpolate streamflow proxy estimates for non-functioning streamgages and extrapolate discharge estimates for ungaged streams;and 4) have time-scaled drill-down visualization of real-time and forecasted flood events. Four case studies were conducted to test and validate WaVE under diverse conditions at national, regional and local levels. Results from these case studies highlight some of WaVE’s inherent strengths, limitations, and the need for further development. WaVE has the potential for being utilized on a wider basis at the local level as data become available and models are validated for converting satellite images and data records from remote sensing technologies into accurate streamflow estimates and higher resolution digital elevation models.展开更多
Flooding of small and medium rivers is caused by environmental factors like rainfall and soil loosening.With the development and application of technologies such as the Internet of Things and big data,the disaster sup...Flooding of small and medium rivers is caused by environmental factors like rainfall and soil loosening.With the development and application of technologies such as the Internet of Things and big data,the disaster supervision and management of large river basins in China has improved over the years.However,due to the frequent floods in small and medium-sized rivers in our country,the current prediction and early warning of small and medium-sized rivers is not accurate enough;it is difficult to realize real-time monitoring of small and medium-sized rivers,and it is also impossible to obtain corresponding data and information in time.Therefore,the construction and application of small and medium-sized river prediction and early warning systems should be further improved.This paper presents an analysis and discussion on flood forecasting and early warning systems for small and medium-sized rivers in detail,and corresponding strategies to improve the effect of forecasting and early warning systems are proposed.展开更多
The rainstorm is believed to contribute flood disasters in upstream catchments,resulting in further consequences in downstream area due to rise of river water levels.Forecasting for flood water level has been challeng...The rainstorm is believed to contribute flood disasters in upstream catchments,resulting in further consequences in downstream area due to rise of river water levels.Forecasting for flood water level has been challenging,present-ing complex task due to its nonlinearities and dependencies.This study proposes a support vector machine regression model,regarded as a powerful machine learning-based technique to forecast flood water levels in downstream area for different lead times.As a case study,Kelantan River in Malaysia has been selected to validate the proposed model.Four water level stations in river basin upstream were identified as input variables.A river water level in downstream area was selected as output of flood forecasting model.A comparison with several bench-marking models,including radial basis function(RBF)and nonlinear autoregres-sive with exogenous input(NARX)neural network was performed.The results demonstrated that in terms of RMSE error,NARX model was better for the proposed models.However,support vector regression(SVR)demonstrated a more consistent performance,indicated by the highest coefficient of determination value in twelve-hour period ahead of forecasting time.The findings of this study signified that SVR was more capable of addressing the long-term flood forecasting problems.展开更多
Ⅰ.INTRODUCTION We have discovered that there exists a good corresponding relationship between theanomalous axes of soil temperature at a depth of 1.6m in winter (December to February) andprecipitations in following f...Ⅰ.INTRODUCTION We have discovered that there exists a good corresponding relationship between theanomalous axes of soil temperature at a depth of 1.6m in winter (December to February) andprecipitations in following flood season (Tang et al., 1982a). We have also designed a simplethermodynamical model and applied it to the forecasting of precipitations in the flood season(Tang et al., 1982 b,c). The practical forecast started from 1975. Before 1980, however, therewere only 40-50 stations in China for measuring the soil temperature at a 1.6m depth. Since1980, the stations have been increased to a total of about 180, but no available mean valueshad been obtained from newly added stations before 1982. Therefore the analysis and map-ping of anomalies of soil temperature was not performed until 1983, and from then on theprecision of analysis has been greatly improved. The following is the actual situation of forecast in five years from 1983 to 1987.展开更多
Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to sol...Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to solve the problem. But those methods have some drawbacks respectively. To overcome these limitations, we propose a new algorithm UAF (Usage Amount Forecast).Firstly, Manhattan distance is used to measure the similarity between fraudulent instances and normal ones. Secondly, UAF gives real-time score which detects the fraud early and reduces as much economic loss as possible. Experiments on various real-world datasets demonstrate the high potential of UAF for processing real-time data and predicting fraudulent users.展开更多
Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active populatio...Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active population is defined as the number of people with their mobile phone powered on.Recently,an unfortunate deadly stampede occurred in Shanghai on December 31th 2014 causing the death of 39 people.We hope that our research can help avoid similar unfortunate accident from happening.In this paper we propose a method for active population density real-time monitoring and forecasting based on data from mobile network operators.Our method is based solely on mobile network operators existing infrastructure and barely requires extra investment,and mobile devices play a very limited role in the process of population locating.Four series forecasting methods,namely Simple Exponential Smoothing(SES),Double exponential smoothing(DES),Triple exponential smoothing(TES)and Autoregressive integrated moving average(ARIMA)are used in our experiments.Our experimental results suggest that we can achieve good forecast result for 135 min in future.展开更多
Streamflow and flood forecasting remains one of the long-standing challenges in hydrology.Traditional physically based models are hampered by sparse parameters and complex calibration procedures particularly in ungaug...Streamflow and flood forecasting remains one of the long-standing challenges in hydrology.Traditional physically based models are hampered by sparse parameters and complex calibration procedures particularly in ungauged catchments.We propose a novel hybrid deep learning model termed encoder-decoder double-layer long short-term memory(ED-DLSTM)to address streamflow forecasting at global scale for all(gauged and ungauged)catchments.Using historical datasets,ED-DLSTM yields a mean Nash-Sutcliffe efficiency coefficient(NSE)of 0.75 across more than 2,000 catchments from the United States,Canada,Central Europe,and the United Kingdom,highlighting improvements by the state-of-the-art machine learning over traditional hydrologic models.Moreover,ED-DLSTM is applied to 160 ungauged catchments in Chile and 76.9%of catchments obtain NSE>0 in the best situation.The interpretability of cross-region capacities of ED-DLSTM are established through the cell state induced by adding a spatial attribute encoding module,which can spontaneously form hydrological regionalization effects after performing spatial coding for different catchments.The study demonstrates the potential of deep leaning methods to overcome the ubiquitous lack of hydrologic information and deficiencies in physical model structure and parameterization.展开更多
Flood is one kind of unexpected and the most common natural disasters, which is affected by many factors and has complex mechanism. At home and abroad, there is still no mature theory and method used for the long-term...Flood is one kind of unexpected and the most common natural disasters, which is affected by many factors and has complex mechanism. At home and abroad, there is still no mature theory and method used for the long-term forecast of natural precipitation at present. In the present paper the disadvantages of grey GM (1, 1) and Markov chain are ana- lyzed, and Grey-Markov forecast theory about flood is put forward and then the modifying model is developed by making prediction of Chaohu Lake basin. Hydrological law was conducted based on the theoretical forecasts by grey system GM (1, 1) forecast model with improved Markov chain. The above method contained Stat-analysis, embodying scientific approach, precise forecast and its reliable results.展开更多
A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction ...A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.展开更多
One of the principal issues related to hydrologic models for prediction of runoff is the estimation of extreme values (floods). It is well understood that unless the models capture the dynamics of rainfall-runoff proc...One of the principal issues related to hydrologic models for prediction of runoff is the estimation of extreme values (floods). It is well understood that unless the models capture the dynamics of rainfall-runoff process, the improvement in prediction of such extremes is far from reality. In this paper, it is proposed to develop a dual (combined and paralleled) artificial neural network (D-ANN), which aims to improve the models performance, especially in terms of extreme values. The performance of the proposed dual-ANN model is compared with that of feed forward ANN (FF-ANN) model, the later being the most common ANN model used in hydrologic literature. The forecasting exercise is carried out for hourly river flow data of Kolar Basin, India. The results of the comparison indicate that the D-ANN model performs better than the FF-ANN model.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No IRT071)
文摘A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.
文摘A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.
文摘Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions.
文摘Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events after Asia and Europe. Eastern Africa is the most hit in Africa. However, Africa continent is at the early stage in term of flood forecasting models development and implementation. Very few hydrological models for flood forecasting are available and implemented in Africa for the flood mitigation. And for the majority of the cases, they need to be improved because of the time evolution. Flash flood in Bamako (Mali) has been putting both human life and the economy in jeopardy. Studying this phenomenon, as to propose applicable solutions for its alleviation in Bamako is a great concern. Therefore, it is of upmost importance to know the existing scientific works related to this situation in Mali and elsewhere. The main aim was to point out the various solutions implemented by various local and international institutions, in order to fight against the flood events. Two types of methods are used for the flood events adaptation: the structural and non-structural methods. The structural methods are essentially based on the implementation of the structures like the dams, dykes, levees, etc. The problem of these methods is that they may reduce the volume of water that will inundate the area but are not efficient for the prediction of the coming floods and cannot alert the population with any lead time in advance. The non-structural methods are the one allowing to perform the prediction with acceptable lead time. They used the hydrological rainfall-runoff models and are the widely methods used for the flood adaptation. This review is more accentuated on the various types non-structural methods and their application in African countries in general and West African countries in particular with their strengths and weaknesses. Hydrologiska Byråns Vattenbalansavdelning (HBV), Hydrologic Engineer Center Hydrologic Model System (HEC-HMS) and Soil and Water Assessment Tool (SWAT) are the hydrological models that are the most widely used in West Africa for the purpose of flood forecasting. The easily way of calibration and the weak number of input data make these models appropriate for the West Africa region where the data are scarce and often with bad quality. These models when implemented and applied, can predict the coming floods, allow the population to adapt and mitigate the flood events and reduce considerably the impacts of floods especially in terms of loss of life.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.
基金Under the auspices of National Natural Science Foundation of China (No. 50609005)Chinese Postdoctoral Science Foundation (No. 2009451116)+1 种基金Postdoctoral Foundation of Heilongjiang Province (No. LBH-Z08255)Foundation of Heilongjiang Province Educational Committee (No. 11451022)
文摘A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.
基金National Natural Science Foundation of China(41475060,41275067,41405060)
文摘Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.
文摘The floods in river Mahanadi delta are due to either dam release of Hirakud or due to contribution of intercepted catchment between Hirakud dam and delta. It is seen from post-Hirakud periods (1958) that out of 19 floods 14 are due to intercepted catchment contribution. The existing flood forecasting systems are mostly for upstream catchment, forecasting the inflow to reservoir, whereas the downstream catchment is devoid of a sound flood forecasting system. Therefore, in this study an attempt has been made to develop a workable forecasting system for downstream catchment. Instead of taking the flow time series concurrent flood peaks of 12 years of base and forecasting stations with its corresponding travel time are considered for analysis. Both statistical method and ANN based approach are considered for finding the peak to reach at delta head with its corresponding travel time. The travel time has been finalized adopting clustering techniques, there by differentiating high, medium and low peaks. The method is simple and it does not take into consideration the rainfall and other factors in the intercepted catchment. A comparison between both methods are tested and it is found that the ANN methods are better beyond the calibration range over statistical method and the efficiency of either methods reduces as the prediction reach is extended. However, it is able to give the peak discharge at delta head before 24 hour to 37 hour for high to low peaks.
文摘Riverine flood event situation awareness and emergency management decision support systems require accurate and scalable geoanalytic data at the local level. This paper introduces the Water-flow Visualization Enhancement (WaVE), a new framework and toolset that integrates enhanced geospatial analytics visualization (common operating picture) and decision support modular tools. WaVE enables users to: 1) dynamically generate on-the-fly, highly granular and interactive geovisual real-time and predictive flood maps that can be scaled down to show discharge, inundation, water velocity, and ancillary geomorphology and hydrology data from the national level to regional and local level;2) integrate data and model analysis results from multiple sources;3) utilize machine learning correlation indexing to interpolate streamflow proxy estimates for non-functioning streamgages and extrapolate discharge estimates for ungaged streams;and 4) have time-scaled drill-down visualization of real-time and forecasted flood events. Four case studies were conducted to test and validate WaVE under diverse conditions at national, regional and local levels. Results from these case studies highlight some of WaVE’s inherent strengths, limitations, and the need for further development. WaVE has the potential for being utilized on a wider basis at the local level as data become available and models are validated for converting satellite images and data records from remote sensing technologies into accurate streamflow estimates and higher resolution digital elevation models.
文摘Flooding of small and medium rivers is caused by environmental factors like rainfall and soil loosening.With the development and application of technologies such as the Internet of Things and big data,the disaster supervision and management of large river basins in China has improved over the years.However,due to the frequent floods in small and medium-sized rivers in our country,the current prediction and early warning of small and medium-sized rivers is not accurate enough;it is difficult to realize real-time monitoring of small and medium-sized rivers,and it is also impossible to obtain corresponding data and information in time.Therefore,the construction and application of small and medium-sized river prediction and early warning systems should be further improved.This paper presents an analysis and discussion on flood forecasting and early warning systems for small and medium-sized rivers in detail,and corresponding strategies to improve the effect of forecasting and early warning systems are proposed.
基金This study is carried out using the Japan-ASEAN Integration Fund(JAIF)with reference number of UTM.K43/11.21/1/12(264)Malaysia-Japan International Institute of Technology,Universiti Teknologi Malaysia.
文摘The rainstorm is believed to contribute flood disasters in upstream catchments,resulting in further consequences in downstream area due to rise of river water levels.Forecasting for flood water level has been challenging,present-ing complex task due to its nonlinearities and dependencies.This study proposes a support vector machine regression model,regarded as a powerful machine learning-based technique to forecast flood water levels in downstream area for different lead times.As a case study,Kelantan River in Malaysia has been selected to validate the proposed model.Four water level stations in river basin upstream were identified as input variables.A river water level in downstream area was selected as output of flood forecasting model.A comparison with several bench-marking models,including radial basis function(RBF)and nonlinear autoregres-sive with exogenous input(NARX)neural network was performed.The results demonstrated that in terms of RMSE error,NARX model was better for the proposed models.However,support vector regression(SVR)demonstrated a more consistent performance,indicated by the highest coefficient of determination value in twelve-hour period ahead of forecasting time.The findings of this study signified that SVR was more capable of addressing the long-term flood forecasting problems.
文摘Ⅰ.INTRODUCTION We have discovered that there exists a good corresponding relationship between theanomalous axes of soil temperature at a depth of 1.6m in winter (December to February) andprecipitations in following flood season (Tang et al., 1982a). We have also designed a simplethermodynamical model and applied it to the forecasting of precipitations in the flood season(Tang et al., 1982 b,c). The practical forecast started from 1975. Before 1980, however, therewere only 40-50 stations in China for measuring the soil temperature at a 1.6m depth. Since1980, the stations have been increased to a total of about 180, but no available mean valueshad been obtained from newly added stations before 1982. Therefore the analysis and map-ping of anomalies of soil temperature was not performed until 1983, and from then on theprecision of analysis has been greatly improved. The following is the actual situation of forecast in five years from 1983 to 1987.
基金This paper is supported by the National Natural Science Foundation of China (61272515), and National Science & Technology Pillar Program (2015BAH03F02).
文摘Real-time Fraud Detection has always been a challenging task, especially in financial, insurance, and telecom industries. There are mainly three methods, which are rule set, outlier detection and classification to solve the problem. But those methods have some drawbacks respectively. To overcome these limitations, we propose a new algorithm UAF (Usage Amount Forecast).Firstly, Manhattan distance is used to measure the similarity between fraudulent instances and normal ones. Secondly, UAF gives real-time score which detects the fraud early and reduces as much economic loss as possible. Experiments on various real-world datasets demonstrate the high potential of UAF for processing real-time data and predicting fraudulent users.
文摘Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active population is defined as the number of people with their mobile phone powered on.Recently,an unfortunate deadly stampede occurred in Shanghai on December 31th 2014 causing the death of 39 people.We hope that our research can help avoid similar unfortunate accident from happening.In this paper we propose a method for active population density real-time monitoring and forecasting based on data from mobile network operators.Our method is based solely on mobile network operators existing infrastructure and barely requires extra investment,and mobile devices play a very limited role in the process of population locating.Four series forecasting methods,namely Simple Exponential Smoothing(SES),Double exponential smoothing(DES),Triple exponential smoothing(TES)and Autoregressive integrated moving average(ARIMA)are used in our experiments.Our experimental results suggest that we can achieve good forecast result for 135 min in future.
基金Strategic Priority Research Program of CAS(Grant No.XDA23090303)NSFC(Grant No.42022054+1 种基金41925030)Sichuan Science and Technology Program(Grant No.2022YFS0543,23JYXC0049).
文摘Streamflow and flood forecasting remains one of the long-standing challenges in hydrology.Traditional physically based models are hampered by sparse parameters and complex calibration procedures particularly in ungauged catchments.We propose a novel hybrid deep learning model termed encoder-decoder double-layer long short-term memory(ED-DLSTM)to address streamflow forecasting at global scale for all(gauged and ungauged)catchments.Using historical datasets,ED-DLSTM yields a mean Nash-Sutcliffe efficiency coefficient(NSE)of 0.75 across more than 2,000 catchments from the United States,Canada,Central Europe,and the United Kingdom,highlighting improvements by the state-of-the-art machine learning over traditional hydrologic models.Moreover,ED-DLSTM is applied to 160 ungauged catchments in Chile and 76.9%of catchments obtain NSE>0 in the best situation.The interpretability of cross-region capacities of ED-DLSTM are established through the cell state induced by adding a spatial attribute encoding module,which can spontaneously form hydrological regionalization effects after performing spatial coding for different catchments.The study demonstrates the potential of deep leaning methods to overcome the ubiquitous lack of hydrologic information and deficiencies in physical model structure and parameterization.
基金Under the auspices of the National Natural Science Foundation of China (No. 40571162)the Natural Science Foun-dation of Anhui Province (No. 050450401)
文摘Flood is one kind of unexpected and the most common natural disasters, which is affected by many factors and has complex mechanism. At home and abroad, there is still no mature theory and method used for the long-term forecast of natural precipitation at present. In the present paper the disadvantages of grey GM (1, 1) and Markov chain are ana- lyzed, and Grey-Markov forecast theory about flood is put forward and then the modifying model is developed by making prediction of Chaohu Lake basin. Hydrological law was conducted based on the theoretical forecasts by grey system GM (1, 1) forecast model with improved Markov chain. The above method contained Stat-analysis, embodying scientific approach, precise forecast and its reliable results.
基金National Natural Science Foundation of China(No.50539120)National Basic Research Program of China("973"Program,No. 2007 CB714101)+1 种基金National Science Fund for Distinguished Young Scholars of China(No.50525927)National Natural Science Founda-tion of China(No.50579045)
文摘A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic construction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric project located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, quarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and management of the dam.
文摘One of the principal issues related to hydrologic models for prediction of runoff is the estimation of extreme values (floods). It is well understood that unless the models capture the dynamics of rainfall-runoff process, the improvement in prediction of such extremes is far from reality. In this paper, it is proposed to develop a dual (combined and paralleled) artificial neural network (D-ANN), which aims to improve the models performance, especially in terms of extreme values. The performance of the proposed dual-ANN model is compared with that of feed forward ANN (FF-ANN) model, the later being the most common ANN model used in hydrologic literature. The forecasting exercise is carried out for hourly river flow data of Kolar Basin, India. The results of the comparison indicate that the D-ANN model performs better than the FF-ANN model.