Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification react...Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.展开更多
The species distinctive PCR primer of Lactobacillus acidophilus ( L. acidophilus) was designed according to 16S rRNA gene sequences of conunon Lac- tobacillus species in fermented material. Bacterial genome DNA of s...The species distinctive PCR primer of Lactobacillus acidophilus ( L. acidophilus) was designed according to 16S rRNA gene sequences of conunon Lac- tobacillus species in fermented material. Bacterial genome DNA of separated L. acidophilus in fermented sample was taken as template, and L. acidophilus in fer- mented material was conducted the quantitative determination by real-time quantitative PCR (RT-PCR). Analysis on RT-PCR results shown that contents of L. aci- dophilus in the test sample reached 1.5 billion CFU / g. Test results shown that contents of L. acidophilus in fermented material could be detected accurately by the established RT-PCR method in the test. indicating that the established RT-PCR method could be aookued to the detection of L. acidophilus in fermented material.展开更多
A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment.Under...A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment.Under optimized assay conditions,FL can be determined in the concentration range from 1 fg/mL to 100 ng/mL,with y=0.194x + 7.859,and a correlation coefficient of 0.967 was identified,with a detection limit of 0.6 fg/mL.Environmental water samples were successfully analyzed,recovery was between 90% and 116%,with intra-day relative standard deviation (RSD) of 6.7%-12.8% and inter-day RSD of 8.4%-15.2%.The results obtained from RTFQ-IPCR were confirmed by ELISA,showing good accuracy and suitability to analyze FL in field samples.As a highly sensitive method,the molecular beacon-based RTFQ-IPCR is acceptable and promising for providing reliable test results to make environmental decisions.展开更多
Real-Lime fluorescent quantitative PCR is a method for quantitative analysis of gene expression developed in recent years, which has been widely used in various fields such as basic scientific research, clinical diagn...Real-Lime fluorescent quantitative PCR is a method for quantitative analysis of gene expression developed in recent years, which has been widely used in various fields such as basic scientific research, clinical diagnosis, disease study, drug research and development since its appearance. It starts relatively late in study on plants, but has already been used for analysis of gene expression in plants and gene identification of exogenous genes. The principles or advantages and dis- advantages of real-time fluorescent quantitative PCR, or its potential problems and condition optimizations in tests were introduced in this study, and then the appli- cation and prospect of real-time fluorescent quantitative PCR in study on plants were also been discussed.展开更多
Nervous necrosis virus (NNV) is the causative agent of fulminant infectious diseases in marine fishes such as grouper. Specific primers were designed based on the conserved sequence of capsid protein (CP) gene of ...Nervous necrosis virus (NNV) is the causative agent of fulminant infectious diseases in marine fishes such as grouper. Specific primers were designed based on the conserved sequence of capsid protein (CP) gene of red-spotted grouper nervous necrosis virus (NNV). By optimizing the reaction conditions, a rapid and simple reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was established for NNV detection. After adding SYTO-9 fluorescent dye in the reaction system, the amplification curve was monitored in real time using a fluorescence detector, and the result was obviously easy to assess. Moreover, the specificity and sensitivity of the established method was analyzed. The results showed that the established RT-LAMP method has good specificity with a detection limit of 1.3 pg/μl. The detection sensitivity of the established RT-LAMP method is 100 times that of the conventional RT-PCR method, and the detection duration is only 40 min. The established RT-LAMP method is suitable for quarantine and rapid detection of grouper nervous necrosis virus.展开更多
[ Objective] To develop a real-time fluorescent PCR assay for rapid detection of Haempohlius parasuis (HPS). [ Method] According to the conservative sequences of 16 S rRNA genes of HPS published in GenBank, a pair o...[ Objective] To develop a real-time fluorescent PCR assay for rapid detection of Haempohlius parasuis (HPS). [ Method] According to the conservative sequences of 16 S rRNA genes of HPS published in GenBank, a pair of specific primers was designed. The real-time fluorescent PCR was developed by optimizing primer concentration and annealing temperature. And its specificity and reproducibility were evaluated. Ten HPS- suspected samples were detected by the developed method. [ Result] The lowest detection limit of the developed real-time fluorescent PCR was 50 copies/μl. This method had good reproducibility, and its coefficient of variation was lower than 2%. Only HPS rather than Streptococcus suis type 2, Staphylococcus aureus, E. coli DH5 alpha, and swine Salmonella typhi could be detected by the developed real-time fluorescent PCR. The HPS-pesitive samples detected by this method were also positive when they were detected by isolation of bacteria or conventional PCR. [ Conclusion] The developed real-time fluorescent PCR is rapid, sensitive, specific and highly reproducible; thus, it can be used for rapid detection of HPS.展开更多
Objective: To study the role of macrophage inflammatory protein (MIP)-2γ in myocarditis pathogenesis in BALB/c mice. Methods: The relationship between the progression of Coxsarckie virus B3(CVB3) viral myocarditis an...Objective: To study the role of macrophage inflammatory protein (MIP)-2γ in myocarditis pathogenesis in BALB/c mice. Methods: The relationship between the progression of Coxsarckie virus B3(CVB3) viral myocarditis and experimental autoimmune myocarditis and MIP-2γ mRNA expression in mouse was studied by TaqMan real-time fluorescent quantitative RT-PCR. Results: MIP-2γ mRNA expression rose on 3 to 5 d after CVB3 infection, reached peak on 7 d, and returned to normal level until 14 d, which corresponded well with the disease course. The MIP-2γ mRNA expression level rose significantly on the day 18 d after immunization with porcine cardiac myosin, which was consistent with pathological examination. Conclusion: MIP-2γ may be involved in the pathogenesis of myocarditis.展开更多
Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut an...Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut and Ses i 1 gene of sesame.After the optimization of reaction conditions,a real-time fluorescent PCR method was established for simultaneous detection of allergenic ingredients of peanut and sesame in food.Genomic DNA samples of peanut,sesame,rice,wheat,barley,soybean,celery,maize,potato,tomato,walnut,groundnut in shell,cashew nut,sunflower seed,almond,apple,pear and strawberry,pork,beef,mutton and fish were used as templates for PCR amplification with deionized water as negative control template.Results indicated that the established real-time fluorescent PCR method could specifically identify allergenic ingredients of peanut and sesame simultaneously.Sensitivity test showed that the minimum detection limit of this method was 0.01%.Therefore,the established real-time fluorescent PCR method is a specific,sensitive and effective assay for simultaneously detecting allergenic ingredients of peanut and sesame in food.展开更多
In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent ...In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent quantitative PCR assay was established for detection of genetically modified maize line MON88017. The established method was evaluated based on the specificity, sensitivity, accuracy and measurement uncertainty. The results showed that the established method had strong specificity in detection of genetically modified maize line MON88017. 1.50% MON88017 sample was detected with 29 replica- tions. The average measured value ( 1. 541% ) was close to the actual value ( 1.50% ) and the relative deviation was 2.70%. The variation coefficient of the measured value was 0.110 g ; the recovery was 100.00% and the measurement uncertainty was 0. 096. The limit of detection for genetically modified maize line MON88017 with the established method was 5 copies at the 97.5% confidence level. Thus, the real-time fluorescent quantitative PCR assay established in this study exhibited high specificity, accuracy and sensitivity, which could provide technical support for the safety supervision of genetically modified organ- isms and products in China.展开更多
Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further ...Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100.展开更多
Summary:The novel coronavirus SARS-CoV-2 caused an outbreak of pneumonia in Wuhan,Hubei province of China in January 2020.This study aims to investigate the effects of different temperature and time durations of virus...Summary:The novel coronavirus SARS-CoV-2 caused an outbreak of pneumonia in Wuhan,Hubei province of China in January 2020.This study aims to investigate the effects of different temperature and time durations of virus inactivation on the results of PCR testing for SARS-CoV-2.Twelve patients at the Renmin Hospital of Wuhan University suspected of being infected with SARS-CoV-2 were selected on February 13,2020 and throat swabs were taken.The swabs were stored at room tempcrature(20-25℃),then divided into aliquots and subjected to different temperature for different periods in order to inactivate the viruses(56℃for 30,45,60 min;65,70,80℃for 10,15,20 min).Control aliquots were stored at room temperature for 60 min.Then all aliquots were tested in a real-time fluorescence PCR using primers against SARS-CoV-2.Regardless of inactivation temperature and time,7 of 12 cases(58.3%)tested were positive for SARS-CoV-2 by PCR,and cycle threshold values were similar.These results suggest that virus inactivation parameters exert minimal infuence on PCR test results.Inactivation at 65℃for 10 min may be sufficient to ensure safe,reliable testing.展开更多
This study was to develop the real-time fluorescence quantitative PCR technique for detecting the ratoon stunting disease (RSD) in virus-free seedcane seedlings. Healthy tissue culture seedlings were obtained from s...This study was to develop the real-time fluorescence quantitative PCR technique for detecting the ratoon stunting disease (RSD) in virus-free seedcane seedlings. Healthy tissue culture seedlings were obtained from six plants of sugarcane ROC22, which had been confirmed RSD-positive by detecting the sugarcane juice, by employing the sugarcane seedlings production protocol. Real-time fluorescence quantitative PCR was used to detect RSD pathogens in tissue culture sam- pies. The results showed that target fragment of RSD pathogens was not found in all 10 samples in real-time fluorescence quantitative PCR, with the Ct values of 37 - 39. The healthy tissue culture sugarcane seedlings do not carry RSD pathogens, indicating that adopting healthy seedcane seedlings production technique could thoroughly get rid of RSD pathogens.展开更多
Objective: To establish the method of real time fluorescence quantitative RT-PCR for detecting the expression of Survivin mRNA in nasopharyngeat carcinoma (NPC) tissues. Methods: The total RNA was extracted from N...Objective: To establish the method of real time fluorescence quantitative RT-PCR for detecting the expression of Survivin mRNA in nasopharyngeat carcinoma (NPC) tissues. Methods: The total RNA was extracted from NPC cell line CNE-2 and tissues with Trizol and then been transcribed reversely to cDNA, a method of real time fluorescence quantitative RT-PCR for detecting the expression of Survivin mRNA in NPC tissues had been established, in which chronic nasopharyn-gitis patients' nasopharynx tissues treated as control group. Results: The expression of Survivin mRNA all could be detected either in CNE-2 cells, NPC tissues or in chronic nasopharyngitis patients' nasopharynx tissues, and there was higher the expression level of Survivin mRNA in NPC tissues than which in chronic nasopharyngitis patients' nasopharynx tissues, the difference was significant (P 〈 0.01). The expression of Survivin mRNA could be detected both in stage Ⅰ + Ⅱ and stage Ⅲ + Ⅳ NPC, and there was no significant difference in relative quantifications of gene expression between these two groups (P 〉 0.05). There was no relationship between Survivin mRNA expression and age and sex of NPC patients (P 〉 0.05). Conclusion: Real time fluorescence quantitative RT-PCR is a rapid, effective and high sensitive method for detecting the expression of Survivin mRNA in NPC tissues. The overexpression of Survivin mRNA may play some roles in pathogenesis of NPC.展开更多
Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL...Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL) which may be due to different detection methods. This study was to detect the expression of MDR1 mRNA in bone marrow cells of children with ALL by real-time fluorescence- quantitative reverse transcription polymerase-chain reaction(FQ-RT-PCR), and combine minimal residual desease(MRD) detection by flow cytometry(FCM) and to study their relationship with treatment response and prognosis of ALL. Methods:The MDR1 mRNA levels in bone marrow cells from 67 children with ALL[28 had newly diagnosed disease, 27 had achieved complete remission(CR), 12 recurrent] and 22 children without leukemia were detected by FQ-RT-PCR. MRD was detected by FCM. The patients were observed for 9-101 months, with a median of 64 months. Results:Standard curves of human MDR1 and GAPDH genes were constructed successfully. MDR1 mRNA was detected in all children with a positive rate of 100%. The mRNA level of MDR1 was similar among the newly diagnosed ALL group, CR group, and control group(P 〉 0.05), but significantly higher in the recurrence group than that in newly diagnosed disease group and control group(0.50 ± 0.55 vs. 0.09 ± 0.26 and 0.12 ± 0.23, P〈 0.05). 54 ALL patients were followed up, and it was found that MDR1 mRNA level was significantly higher in ALL patients within 3 years duration than that of ALL patients with 3-6 years and over 6 years duration(0.63 ± 0.56 vs. 0.11 ± 0.12 and 0.04 ± 0.06, P〈 0.01). For the 28 children with newly diagnosed disease, the MDR1 mRNA level was similar between WBC 〉 50 ~ 109 group and WBC〈50 × 10^9 group(P〉 0.05). In the 33 CR patients, the MDR1 mRNA level was significantly higher in MRD〉10a group than that in MRD〈10a group(0.39 ± 0.47 vs. 0.03 ± 0.03, P 〈 0.05). Conclusion:The sensitivity and specificity of FQ-RT-PCR in detecting MDR1 mRNA in bone marrowy cells of children with ALL patients are high. MDR1 mRNA is expressed in children with and without leukemia. MDR1 mRNA is highly expressed in the CR ALL patients with high MRD, recurrence and short duration(within 3 years). Monitoring MRD and the MDR1 mRNA level might be helpful for individual treatment.展开更多
[ Objective] This study aimed to establish a simultaneous detection method of shrimp viruses by real-time fluorescence quantitative RT-PCR, to improve the efficiency of inspection and quarantine. [ Method] A novel rea...[ Objective] This study aimed to establish a simultaneous detection method of shrimp viruses by real-time fluorescence quantitative RT-PCR, to improve the efficiency of inspection and quarantine. [ Method] A novel real-time fluorescence quantitative RT-PCR assay was established and optimized for simultaneously detecting DNA/RNA of four shrimp viruses (WSSV, IHHNV, TSV and YHV ). [ Result] The optimized real-time fluorescence quantitative RT-PCR system gener- ated typical amplification curves with high amplification efficiencies (E = 1.06, 1.07, 0.92 and 0.92, respectively), good hnear relationship ( r = 1 ), uniform repeatability ( standard deviation = 0.05 - 0.46 ; variation coefficient = 0.26% - 1.62% ) and high sensitivity, exhibiting no significant differences compared with re- al-time fluorescence quantitative PCR (average error of Ct value = 0.04 -0.40; T = 0.53 -2.50; P 〉 0.05 ). The total detection time was about 1 h. [ Conclusion] The optimized real-time fluorescence quantitative RT-PCR system can be used for rapid detection of WSSV, IHHNV, TSV and YHV.展开更多
Porcine epidemic diarrhea,a highly contagious enteric infectious disease caused by the porcine epidemic diarrhea virus(PEDV)with symptoms of vomit,diarrhea,loss of appetite of suckling pig,has led to serious economic ...Porcine epidemic diarrhea,a highly contagious enteric infectious disease caused by the porcine epidemic diarrhea virus(PEDV)with symptoms of vomit,diarrhea,loss of appetite of suckling pig,has led to serious economic loss to the global swine industry.In this study,a real-time fluorescence reverse transcription loop-mediated isothermal amplification(RT-LAMP)assay was developed to detect PEDV RNA.The real-time fluorescence RT-LAMP assay was performed at62℃for 60 min,using a simple and portable device,the ESE-Quant Tube Scanner.The detection limit of RNA was 2.9×10^(6) copies/μl,10 times as sensitive as RT-PCR,and the detection was specific only to PEDV.Application of this method to clinical samples yielded a positivity rate of 93%,which was higher than that of RT-PCR.This technique saves time and is efficient,and is thus expected to be useful for the diagnosis of PEDV infection in the field.展开更多
According to VP2 gene sequence of the porcine parvovirus virus strain NADL-2 (NC001718) available in GenBank (NC_001718), a pair of specific primer was designed, and the target fragment of 431 bp was obtained by P...According to VP2 gene sequence of the porcine parvovirus virus strain NADL-2 (NC001718) available in GenBank (NC_001718), a pair of specific primer was designed, and the target fragment of 431 bp was obtained by PCR amplification. The products were ligated with pMD18- T vector and then transformed into bacteria DH5α for recombinant plasmid extraction. After PCR identification and sequencing, recombinant plasmid was used as a standard template to establish the standard curve of SYBR Green I fluorescence quantitative PCR. Sensitivity test, specificity test and repeatability test were also determined. The results indicated that there was a good linear relationship between threshold cycle of the standard curve and template concentration, R2 =0.997 6. Tm ranged from 82.3 to 82.9 ℃, while the sensitivity was 72.1 copies/μl with good specificity and repeatability. The developed SYBR Green I real-time quantitative PCR method to detect PPV VP2 gene laid the basis for further studies on patho- oenesis, early clinical diaonosis of this virus and quantitative analysis of PPV infection.展开更多
Objective Establishing a highly sensitive real-time fluorescence quantitative PCR (qPCR) method for universal testing of epidemic African swine fever virus (ASFV) strains. Methods The ASFV p72 gene was targeted to des...Objective Establishing a highly sensitive real-time fluorescence quantitative PCR (qPCR) method for universal testing of epidemic African swine fever virus (ASFV) strains. Methods The ASFV p72 gene was targeted to design primer probes covering 24 p72 genotypes. The optimal amount of dimethylsulphoxide (DMSO) for qPCR amplification was determined, Various sensitivity and limit of detection (LOD) tests were performed, and clinical samples from China and imported goods were tested. Results The optimal primer-probe combination could specifically detect ASFV, 1.5% DMSO was optimal for qPCR, and LOD reached 3.2 copies/μL with good reproducibility (n = 20, p = 0.369). The method was employed to test 142 clinically suspected samples, of which 30 pig blood and 37 pig tissue samples were ASFV-positive. Moreover, the positive testing rate for ASFV was higher than for the standard qPCR method recommended by the Office International Des Epizooties (OIE), and for the commercially available kit. Thus, our method is superior for testing weakly positive samples with low virus titre, and epidemic strains present in imported goods. Conclusion Our method could be employed for universal testing of epidemic ASFV strains worldwide, ensuring wider coverage of hosts and ASFV strains/endemic strains, reducing false<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">negatives, and benefitting early diagnosis.</span>展开更多
Background:The judgment of the division point of the bile duct has always been one of the difficulties of laparoscopic left lateral sectionectomy(LLLS).The purpose of this study was to assess the effects of indocyanin...Background:The judgment of the division point of the bile duct has always been one of the difficulties of laparoscopic left lateral sectionectomy(LLLS).The purpose of this study was to assess the effects of indocyanine green(ICG)fluorescence cholangiography during LLLS on the occurrence of biliary complications in both donors and recipients.The optimal dose and injection time of ICG were also investigated.Methods:This is a retrospective cohort study.From October 2016 to December 2022,the clinical data of 103 donors who underwent LLLS and relevant recipients were retrospectively analyzed.According to whether ICG fluorescence cholangiography was used,they were divided into a non-ICG group(n=46)and an ICG group(n=57).Biliary complications were observed and the optimal dose and injection time of ICG were explored.Results:Three donors in the non-ICG group suffered from bile leakage.Four grafts had multiple bile duct openings and biliary complications were observed in the relevant recipients who received these grafts in the non-ICG group.Two recipients had bile leakage,and the other two had biliary stenosis.There was no biliary complications both in donors and recipients in the ICG group.The fluorescence intensity of the liver was 108.1±17.6 at a dose of 0.004 mg/kg 90 minutes after injection,significantly weaker than that at 0.05 mg/kg 30 minutes(200.3±17.6,P=0.001)and 90 minutes after injection(140.2±15.4,P=0.001).The fluorescence intensity contrast value at a dose of 0.004 mg/kg was stronger than that at 0.05 mg/kg,both measured 90 minutes after injection(0.098±0.032 vs.0.078±0.022,P=0.021).Conclusions:ICG fluorescence cholangiography is safe and feasible in LLLS.It reduces biliary complications in both donors and recipients.The optimal ICG dose was 0.004 mg/kg,and 90 minutes after injection was the best observation time.ICG fluorescence cholangiography is recommended for routine use in LLLS.展开更多
基金Supported by National Natural Science Foundation of China(31260406)Natural Science Fund Project of Inner Mongolia(2012MS0502)~~
文摘Real-time fluorescent quantitative PCR (RQ-PCR) is a detection method by adding fluorescent dye or fluorescent probe into the PCR reaction system, using fluorescent signal accumulation to monitor amplification reactions of PCR reaction process, and finally the unknown template can be quantitatively analyzed through the standard curve. So the detection level of PCR has improved from the qualitative to the quantitative. In order to provide a theoretical reference for further application, the principle, classification, advantages and disadvantages of RQ-PCR were intro- duced, and its application and progress in plants in recent years were reviewed.
文摘The species distinctive PCR primer of Lactobacillus acidophilus ( L. acidophilus) was designed according to 16S rRNA gene sequences of conunon Lac- tobacillus species in fermented material. Bacterial genome DNA of separated L. acidophilus in fermented sample was taken as template, and L. acidophilus in fer- mented material was conducted the quantitative determination by real-time quantitative PCR (RT-PCR). Analysis on RT-PCR results shown that contents of L. aci- dophilus in the test sample reached 1.5 billion CFU / g. Test results shown that contents of L. acidophilus in fermented material could be detected accurately by the established RT-PCR method in the test. indicating that the established RT-PCR method could be aookued to the detection of L. acidophilus in fermented material.
基金support by the Scienceand Technology Commission of Shanghai Municipality in China (Key Project of Fundamental Research) (No.09JC1407600)the Science and Technology Commission of Shanghai Municipality in China (Key Project of theScience and Technology Research) (No. 09231202805)the Shanghai Leading Academic Discipline Project(No. B604)
文摘A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment.Under optimized assay conditions,FL can be determined in the concentration range from 1 fg/mL to 100 ng/mL,with y=0.194x + 7.859,and a correlation coefficient of 0.967 was identified,with a detection limit of 0.6 fg/mL.Environmental water samples were successfully analyzed,recovery was between 90% and 116%,with intra-day relative standard deviation (RSD) of 6.7%-12.8% and inter-day RSD of 8.4%-15.2%.The results obtained from RTFQ-IPCR were confirmed by ELISA,showing good accuracy and suitability to analyze FL in field samples.As a highly sensitive method,the molecular beacon-based RTFQ-IPCR is acceptable and promising for providing reliable test results to make environmental decisions.
基金Supported by National Natural Science Foundation of China ( 30800885,30871726)
文摘Real-Lime fluorescent quantitative PCR is a method for quantitative analysis of gene expression developed in recent years, which has been widely used in various fields such as basic scientific research, clinical diagnosis, disease study, drug research and development since its appearance. It starts relatively late in study on plants, but has already been used for analysis of gene expression in plants and gene identification of exogenous genes. The principles or advantages and dis- advantages of real-time fluorescent quantitative PCR, or its potential problems and condition optimizations in tests were introduced in this study, and then the appli- cation and prospect of real-time fluorescent quantitative PCR in study on plants were also been discussed.
基金Supported by Application Technology R&D and Demonstration Project of Hainan Province(ZDXM2015025)
文摘Nervous necrosis virus (NNV) is the causative agent of fulminant infectious diseases in marine fishes such as grouper. Specific primers were designed based on the conserved sequence of capsid protein (CP) gene of red-spotted grouper nervous necrosis virus (NNV). By optimizing the reaction conditions, a rapid and simple reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was established for NNV detection. After adding SYTO-9 fluorescent dye in the reaction system, the amplification curve was monitored in real time using a fluorescence detector, and the result was obviously easy to assess. Moreover, the specificity and sensitivity of the established method was analyzed. The results showed that the established RT-LAMP method has good specificity with a detection limit of 1.3 pg/μl. The detection sensitivity of the established RT-LAMP method is 100 times that of the conventional RT-PCR method, and the detection duration is only 40 min. The established RT-LAMP method is suitable for quarantine and rapid detection of grouper nervous necrosis virus.
基金funded by the Key Technologies R&D Program of Guangxi of China (0993009-1)
文摘[ Objective] To develop a real-time fluorescent PCR assay for rapid detection of Haempohlius parasuis (HPS). [ Method] According to the conservative sequences of 16 S rRNA genes of HPS published in GenBank, a pair of specific primers was designed. The real-time fluorescent PCR was developed by optimizing primer concentration and annealing temperature. And its specificity and reproducibility were evaluated. Ten HPS- suspected samples were detected by the developed method. [ Result] The lowest detection limit of the developed real-time fluorescent PCR was 50 copies/μl. This method had good reproducibility, and its coefficient of variation was lower than 2%. Only HPS rather than Streptococcus suis type 2, Staphylococcus aureus, E. coli DH5 alpha, and swine Salmonella typhi could be detected by the developed real-time fluorescent PCR. The HPS-pesitive samples detected by this method were also positive when they were detected by isolation of bacteria or conventional PCR. [ Conclusion] The developed real-time fluorescent PCR is rapid, sensitive, specific and highly reproducible; thus, it can be used for rapid detection of HPS.
文摘Objective: To study the role of macrophage inflammatory protein (MIP)-2γ in myocarditis pathogenesis in BALB/c mice. Methods: The relationship between the progression of Coxsarckie virus B3(CVB3) viral myocarditis and experimental autoimmune myocarditis and MIP-2γ mRNA expression in mouse was studied by TaqMan real-time fluorescent quantitative RT-PCR. Results: MIP-2γ mRNA expression rose on 3 to 5 d after CVB3 infection, reached peak on 7 d, and returned to normal level until 14 d, which corresponded well with the disease course. The MIP-2γ mRNA expression level rose significantly on the day 18 d after immunization with porcine cardiac myosin, which was consistent with pathological examination. Conclusion: MIP-2γ may be involved in the pathogenesis of myocarditis.
基金Supported by Scientific Research Project of Anhui Bureau of Quality and Technical Supervision(13zj370033)
文摘Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut and Ses i 1 gene of sesame.After the optimization of reaction conditions,a real-time fluorescent PCR method was established for simultaneous detection of allergenic ingredients of peanut and sesame in food.Genomic DNA samples of peanut,sesame,rice,wheat,barley,soybean,celery,maize,potato,tomato,walnut,groundnut in shell,cashew nut,sunflower seed,almond,apple,pear and strawberry,pork,beef,mutton and fish were used as templates for PCR amplification with deionized water as negative control template.Results indicated that the established real-time fluorescent PCR method could specifically identify allergenic ingredients of peanut and sesame simultaneously.Sensitivity test showed that the minimum detection limit of this method was 0.01%.Therefore,the established real-time fluorescent PCR method is a specific,sensitive and effective assay for simultaneously detecting allergenic ingredients of peanut and sesame in food.
基金Supported by Project of Standardization Technical System from the Administration of Quality and Technology Supervision of Sichuan Province(ZYBZ2013-39)
文摘In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent quantitative PCR assay was established for detection of genetically modified maize line MON88017. The established method was evaluated based on the specificity, sensitivity, accuracy and measurement uncertainty. The results showed that the established method had strong specificity in detection of genetically modified maize line MON88017. 1.50% MON88017 sample was detected with 29 replica- tions. The average measured value ( 1. 541% ) was close to the actual value ( 1.50% ) and the relative deviation was 2.70%. The variation coefficient of the measured value was 0.110 g ; the recovery was 100.00% and the measurement uncertainty was 0. 096. The limit of detection for genetically modified maize line MON88017 with the established method was 5 copies at the 97.5% confidence level. Thus, the real-time fluorescent quantitative PCR assay established in this study exhibited high specificity, accuracy and sensitivity, which could provide technical support for the safety supervision of genetically modified organ- isms and products in China.
基金supported by National Natural Science Foundation of China(Grant No.30671397 and No.30871655)the Public Beneficial Research Project of Agricultural Ministry,China(Grant No.nyhyzx07-056)
文摘Burkholderia glumae causing seedling rot and grain rot of rice was listed as a plant quarantine disease of China in 2007. It's quite necessary to set up effective detection methods for the pathogen to manage further dispersal of this disease. The present study combined the real-time PCR method with classical PCR to increase the detecting efficiency, and to develop an accurate, rapid and sensitive method to detect the pathogen in the seed quarantine for effective management of the disease. The results showed that all the tested strains of B. glumae produced about 139 bp specific fragments by the real-time PCR and the general PCR methods, while others showed negative PCR result. The bacteria could be detected at the concentrations of 1×10^4 CFU/mL by general PCR method and at the concentrations below 100 CFU/mL by real-time fluorescence PCR method. B. glumae could be detected when the inoculated and healthy seeds were mixed with a proportion of 1:100.
基金This work was supported by grants from the Special Science and Technology Cooperation Project of Ningxia Hui Autonomous Region Key R&D Program(No.2018BFG02008)the National Science and Technology Key Projects on"Major Infectious Diseases such as HIV/AIDS,Viral Hepatitis Prevention and Treatment"(No.2017ZX10103005).
文摘Summary:The novel coronavirus SARS-CoV-2 caused an outbreak of pneumonia in Wuhan,Hubei province of China in January 2020.This study aims to investigate the effects of different temperature and time durations of virus inactivation on the results of PCR testing for SARS-CoV-2.Twelve patients at the Renmin Hospital of Wuhan University suspected of being infected with SARS-CoV-2 were selected on February 13,2020 and throat swabs were taken.The swabs were stored at room tempcrature(20-25℃),then divided into aliquots and subjected to different temperature for different periods in order to inactivate the viruses(56℃for 30,45,60 min;65,70,80℃for 10,15,20 min).Control aliquots were stored at room temperature for 60 min.Then all aliquots were tested in a real-time fluorescence PCR using primers against SARS-CoV-2.Regardless of inactivation temperature and time,7 of 12 cases(58.3%)tested were positive for SARS-CoV-2 by PCR,and cycle threshold values were similar.These results suggest that virus inactivation parameters exert minimal infuence on PCR test results.Inactivation at 65℃for 10 min may be sufficient to ensure safe,reliable testing.
基金Supported by Special Funds for Basic Scientific Research of Guangxi Sugarcane Research Institute(G2009006,G2010006,G2009015)Sci-tech Research and Development Program of Guangxi Academy of Agricultural Sciences(200805)
文摘This study was to develop the real-time fluorescence quantitative PCR technique for detecting the ratoon stunting disease (RSD) in virus-free seedcane seedlings. Healthy tissue culture seedlings were obtained from six plants of sugarcane ROC22, which had been confirmed RSD-positive by detecting the sugarcane juice, by employing the sugarcane seedlings production protocol. Real-time fluorescence quantitative PCR was used to detect RSD pathogens in tissue culture sam- pies. The results showed that target fragment of RSD pathogens was not found in all 10 samples in real-time fluorescence quantitative PCR, with the Ct values of 37 - 39. The healthy tissue culture sugarcane seedlings do not carry RSD pathogens, indicating that adopting healthy seedcane seedlings production technique could thoroughly get rid of RSD pathogens.
基金the National Natural Science Foundation of China (No. 30460145).
文摘Objective: To establish the method of real time fluorescence quantitative RT-PCR for detecting the expression of Survivin mRNA in nasopharyngeat carcinoma (NPC) tissues. Methods: The total RNA was extracted from NPC cell line CNE-2 and tissues with Trizol and then been transcribed reversely to cDNA, a method of real time fluorescence quantitative RT-PCR for detecting the expression of Survivin mRNA in NPC tissues had been established, in which chronic nasopharyn-gitis patients' nasopharynx tissues treated as control group. Results: The expression of Survivin mRNA all could be detected either in CNE-2 cells, NPC tissues or in chronic nasopharyngitis patients' nasopharynx tissues, and there was higher the expression level of Survivin mRNA in NPC tissues than which in chronic nasopharyngitis patients' nasopharynx tissues, the difference was significant (P 〈 0.01). The expression of Survivin mRNA could be detected both in stage Ⅰ + Ⅱ and stage Ⅲ + Ⅳ NPC, and there was no significant difference in relative quantifications of gene expression between these two groups (P 〉 0.05). There was no relationship between Survivin mRNA expression and age and sex of NPC patients (P 〉 0.05). Conclusion: Real time fluorescence quantitative RT-PCR is a rapid, effective and high sensitive method for detecting the expression of Survivin mRNA in NPC tissues. The overexpression of Survivin mRNA may play some roles in pathogenesis of NPC.
基金This work was supported by Science Project from Science and Tech- nology Department of HuBei province(2006AA301B56-3)
文摘Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL) which may be due to different detection methods. This study was to detect the expression of MDR1 mRNA in bone marrow cells of children with ALL by real-time fluorescence- quantitative reverse transcription polymerase-chain reaction(FQ-RT-PCR), and combine minimal residual desease(MRD) detection by flow cytometry(FCM) and to study their relationship with treatment response and prognosis of ALL. Methods:The MDR1 mRNA levels in bone marrow cells from 67 children with ALL[28 had newly diagnosed disease, 27 had achieved complete remission(CR), 12 recurrent] and 22 children without leukemia were detected by FQ-RT-PCR. MRD was detected by FCM. The patients were observed for 9-101 months, with a median of 64 months. Results:Standard curves of human MDR1 and GAPDH genes were constructed successfully. MDR1 mRNA was detected in all children with a positive rate of 100%. The mRNA level of MDR1 was similar among the newly diagnosed ALL group, CR group, and control group(P 〉 0.05), but significantly higher in the recurrence group than that in newly diagnosed disease group and control group(0.50 ± 0.55 vs. 0.09 ± 0.26 and 0.12 ± 0.23, P〈 0.05). 54 ALL patients were followed up, and it was found that MDR1 mRNA level was significantly higher in ALL patients within 3 years duration than that of ALL patients with 3-6 years and over 6 years duration(0.63 ± 0.56 vs. 0.11 ± 0.12 and 0.04 ± 0.06, P〈 0.01). For the 28 children with newly diagnosed disease, the MDR1 mRNA level was similar between WBC 〉 50 ~ 109 group and WBC〈50 × 10^9 group(P〉 0.05). In the 33 CR patients, the MDR1 mRNA level was significantly higher in MRD〉10a group than that in MRD〈10a group(0.39 ± 0.47 vs. 0.03 ± 0.03, P 〈 0.05). Conclusion:The sensitivity and specificity of FQ-RT-PCR in detecting MDR1 mRNA in bone marrowy cells of children with ALL patients are high. MDR1 mRNA is expressed in children with and without leukemia. MDR1 mRNA is highly expressed in the CR ALL patients with high MRD, recurrence and short duration(within 3 years). Monitoring MRD and the MDR1 mRNA level might be helpful for individual treatment.
文摘[ Objective] This study aimed to establish a simultaneous detection method of shrimp viruses by real-time fluorescence quantitative RT-PCR, to improve the efficiency of inspection and quarantine. [ Method] A novel real-time fluorescence quantitative RT-PCR assay was established and optimized for simultaneously detecting DNA/RNA of four shrimp viruses (WSSV, IHHNV, TSV and YHV ). [ Result] The optimized real-time fluorescence quantitative RT-PCR system gener- ated typical amplification curves with high amplification efficiencies (E = 1.06, 1.07, 0.92 and 0.92, respectively), good hnear relationship ( r = 1 ), uniform repeatability ( standard deviation = 0.05 - 0.46 ; variation coefficient = 0.26% - 1.62% ) and high sensitivity, exhibiting no significant differences compared with re- al-time fluorescence quantitative PCR (average error of Ct value = 0.04 -0.40; T = 0.53 -2.50; P 〉 0.05 ). The total detection time was about 1 h. [ Conclusion] The optimized real-time fluorescence quantitative RT-PCR system can be used for rapid detection of WSSV, IHHNV, TSV and YHV.
基金Supported by Science and Technology Research Project of Universities in Hebei Province,China(QN2014220)
文摘Porcine epidemic diarrhea,a highly contagious enteric infectious disease caused by the porcine epidemic diarrhea virus(PEDV)with symptoms of vomit,diarrhea,loss of appetite of suckling pig,has led to serious economic loss to the global swine industry.In this study,a real-time fluorescence reverse transcription loop-mediated isothermal amplification(RT-LAMP)assay was developed to detect PEDV RNA.The real-time fluorescence RT-LAMP assay was performed at62℃for 60 min,using a simple and portable device,the ESE-Quant Tube Scanner.The detection limit of RNA was 2.9×10^(6) copies/μl,10 times as sensitive as RT-PCR,and the detection was specific only to PEDV.Application of this method to clinical samples yielded a positivity rate of 93%,which was higher than that of RT-PCR.This technique saves time and is efficient,and is thus expected to be useful for the diagnosis of PEDV infection in the field.
文摘According to VP2 gene sequence of the porcine parvovirus virus strain NADL-2 (NC001718) available in GenBank (NC_001718), a pair of specific primer was designed, and the target fragment of 431 bp was obtained by PCR amplification. The products were ligated with pMD18- T vector and then transformed into bacteria DH5α for recombinant plasmid extraction. After PCR identification and sequencing, recombinant plasmid was used as a standard template to establish the standard curve of SYBR Green I fluorescence quantitative PCR. Sensitivity test, specificity test and repeatability test were also determined. The results indicated that there was a good linear relationship between threshold cycle of the standard curve and template concentration, R2 =0.997 6. Tm ranged from 82.3 to 82.9 ℃, while the sensitivity was 72.1 copies/μl with good specificity and repeatability. The developed SYBR Green I real-time quantitative PCR method to detect PPV VP2 gene laid the basis for further studies on patho- oenesis, early clinical diaonosis of this virus and quantitative analysis of PPV infection.
文摘Objective Establishing a highly sensitive real-time fluorescence quantitative PCR (qPCR) method for universal testing of epidemic African swine fever virus (ASFV) strains. Methods The ASFV p72 gene was targeted to design primer probes covering 24 p72 genotypes. The optimal amount of dimethylsulphoxide (DMSO) for qPCR amplification was determined, Various sensitivity and limit of detection (LOD) tests were performed, and clinical samples from China and imported goods were tested. Results The optimal primer-probe combination could specifically detect ASFV, 1.5% DMSO was optimal for qPCR, and LOD reached 3.2 copies/μL with good reproducibility (n = 20, p = 0.369). The method was employed to test 142 clinically suspected samples, of which 30 pig blood and 37 pig tissue samples were ASFV-positive. Moreover, the positive testing rate for ASFV was higher than for the standard qPCR method recommended by the Office International Des Epizooties (OIE), and for the commercially available kit. Thus, our method is superior for testing weakly positive samples with low virus titre, and epidemic strains present in imported goods. Conclusion Our method could be employed for universal testing of epidemic ASFV strains worldwide, ensuring wider coverage of hosts and ASFV strains/endemic strains, reducing false<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">negatives, and benefitting early diagnosis.</span>
基金National Natural Science Foundation of China(No.82272836).
文摘Background:The judgment of the division point of the bile duct has always been one of the difficulties of laparoscopic left lateral sectionectomy(LLLS).The purpose of this study was to assess the effects of indocyanine green(ICG)fluorescence cholangiography during LLLS on the occurrence of biliary complications in both donors and recipients.The optimal dose and injection time of ICG were also investigated.Methods:This is a retrospective cohort study.From October 2016 to December 2022,the clinical data of 103 donors who underwent LLLS and relevant recipients were retrospectively analyzed.According to whether ICG fluorescence cholangiography was used,they were divided into a non-ICG group(n=46)and an ICG group(n=57).Biliary complications were observed and the optimal dose and injection time of ICG were explored.Results:Three donors in the non-ICG group suffered from bile leakage.Four grafts had multiple bile duct openings and biliary complications were observed in the relevant recipients who received these grafts in the non-ICG group.Two recipients had bile leakage,and the other two had biliary stenosis.There was no biliary complications both in donors and recipients in the ICG group.The fluorescence intensity of the liver was 108.1±17.6 at a dose of 0.004 mg/kg 90 minutes after injection,significantly weaker than that at 0.05 mg/kg 30 minutes(200.3±17.6,P=0.001)and 90 minutes after injection(140.2±15.4,P=0.001).The fluorescence intensity contrast value at a dose of 0.004 mg/kg was stronger than that at 0.05 mg/kg,both measured 90 minutes after injection(0.098±0.032 vs.0.078±0.022,P=0.021).Conclusions:ICG fluorescence cholangiography is safe and feasible in LLLS.It reduces biliary complications in both donors and recipients.The optimal ICG dose was 0.004 mg/kg,and 90 minutes after injection was the best observation time.ICG fluorescence cholangiography is recommended for routine use in LLLS.