This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected populat...At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.展开更多
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation w...To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system.展开更多
Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active populatio...Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active population is defined as the number of people with their mobile phone powered on.Recently,an unfortunate deadly stampede occurred in Shanghai on December 31th 2014 causing the death of 39 people.We hope that our research can help avoid similar unfortunate accident from happening.In this paper we propose a method for active population density real-time monitoring and forecasting based on data from mobile network operators.Our method is based solely on mobile network operators existing infrastructure and barely requires extra investment,and mobile devices play a very limited role in the process of population locating.Four series forecasting methods,namely Simple Exponential Smoothing(SES),Double exponential smoothing(DES),Triple exponential smoothing(TES)and Autoregressive integrated moving average(ARIMA)are used in our experiments.Our experimental results suggest that we can achieve good forecast result for 135 min in future.展开更多
The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme ...The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme of soil moisture content in paddy field was put forward from two key links of soil moisture content monitoring and field water-layer monitoring. This scheme could meet the alternative monitoring requirements of soil moisture content in water layer and none-water layer. It had a good maneuverability and could provide references for practical work.展开更多
As one of the dynamic disasters of coal mines,rockburst seriously affects underground safe coal mining.Based on the laboratory test,field test,and theoretical analysis,this study proposed the principle of the rock bur...As one of the dynamic disasters of coal mines,rockburst seriously affects underground safe coal mining.Based on the laboratory test,field test,and theoretical analysis,this study proposed the principle of the rock burst induced by the combination of dynamic and static stresses and divided such rock burst into three types,including induced by primary dynamic stress,mainly induced by dynamic stress,and by dynamic stress in low critical stress state.The expressions of the static stress induced by coal mining and dynamic stress induced by mining tremors were obtained.Moreover,theories and technologies at home and abroad were summarized concerning the monitoring,forecasting,and preventing of rockburst.These mainly include the zoning and leveling forecasting method,electromagnetic radiation technology,elastic wave and seismic wave computed tomography technologies in aspect of rockburst monitoring,as well as the intensity weakening theory,the strong-soft-strong structure effect,the directional hydraulic fracturing technology,the roadway support system in regards of rockburst prevention.The prospect of rockburst development suggested that researches concerning the rockburst mechanism should be quantitatively developed around the roadway and coalface surrounding coal-rock mass.It should be focused on the rockburst mechanism and prevention technology of mining with over 1,000 km deep and mining in large tectonic zone.In addition,the monitoring and prevention of rockburst should be based on rockburst mechanism.展开更多
The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002-2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. ...The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002-2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. The sea ice retrieval system of the HY-1 A has been constructed. It receives 1B data from the satellite, outputs sea ice images and provides digital products of ice concentration, ice thickness and ice edge, which can be used as important information for sea ice monitoring and the initial fields of the numeric sea ice forecast and as one of the reference data for the sea ice forecasting verification. The sea ice retrieval system of the satellite is described, including its processes, methods and parameters. The retrieving results and their application to the sea ice monitoring and forecasting for the Bohai Sea are also discussed.展开更多
Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collap...The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.展开更多
Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-t...Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-time coordinate of an object in a certain coordinate system can be obtained, and further dynamic displacement data and curve of the object can also be achieved. That is, automatic gathering and real-time processing of data can be carried out by this system simultaneously. For this system, first, an untouched monitoring technique is adopted, which can monitor or detect objects several to hundreds of meters apart; second, it has flexible installation condition and good monitoring precision of sub-millimeter degree; third, it is fit for dynamic, quasi-dynamic and static monitoring of large engineering structures. Through several tests and applications in large bridges, good reliability and dominance of the system is proved.展开更多
Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical...Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.展开更多
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i...Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.展开更多
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and...During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.展开更多
Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background...Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.展开更多
The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is ...The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.展开更多
The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In ...The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In recent years,with the continuous improvement of monitoring technology and increase of public demands,the original real-time monitoring system needs to be upgraded and improved in terms of timeliness,stability,accuracy and ease of operation.Therefore,by accessing a total of more than 1,000 seismic stations,reducing the seismic trigger threshold of the monitoring system,eliminating the false trigger stations and optimizing the seismic waveform display interface,the current earthquake monitoring demands can be satisfied on the basis of ensuring the stable operation of the system.展开更多
A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.Howeve...A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.展开更多
Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology...Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology has been applied to monitor regional average concen- trations and inventory of nitrogen dioxide, sulfur dioxide and ozone. DOAS system was set up and applied to monitor the main air pollutants in Huaibei area. Monitoring data were obtained from 7 to 28 August, 2011. Monitoring results show measurements in controlling pollution are effective, and emissions of pollutants are up to the national standard in Huaibei area. Prediction model was also created to track changing trend of pollutions. These will provide raw data support for effective evaluation of environmental quality in Huaibei area.展开更多
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金supported by MOA project 111AS-7.3.4-SB-S3 and 112AS-7.3.4-SB-S3.
文摘At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
文摘To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system.
文摘Real-time monitoring and forecast of large scale active population density is of great significance as it can warn and prevent possible public safety accident caused by abnormal population aggregation.Active population is defined as the number of people with their mobile phone powered on.Recently,an unfortunate deadly stampede occurred in Shanghai on December 31th 2014 causing the death of 39 people.We hope that our research can help avoid similar unfortunate accident from happening.In this paper we propose a method for active population density real-time monitoring and forecasting based on data from mobile network operators.Our method is based solely on mobile network operators existing infrastructure and barely requires extra investment,and mobile devices play a very limited role in the process of population locating.Four series forecasting methods,namely Simple Exponential Smoothing(SES),Double exponential smoothing(DES),Triple exponential smoothing(TES)and Autoregressive integrated moving average(ARIMA)are used in our experiments.Our experimental results suggest that we can achieve good forecast result for 135 min in future.
文摘The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme of soil moisture content in paddy field was put forward from two key links of soil moisture content monitoring and field water-layer monitoring. This scheme could meet the alternative monitoring requirements of soil moisture content in water layer and none-water layer. It had a good maneuverability and could provide references for practical work.
基金supported by the National Natural Science Foundation of China(51174285,51104150)the Research and Innovation Project for College Graduates of Jiangsu Province(CXZZ12_0949)the National Twelfth-Five Year Research Program of China(2012BAK09B01).
文摘As one of the dynamic disasters of coal mines,rockburst seriously affects underground safe coal mining.Based on the laboratory test,field test,and theoretical analysis,this study proposed the principle of the rock burst induced by the combination of dynamic and static stresses and divided such rock burst into three types,including induced by primary dynamic stress,mainly induced by dynamic stress,and by dynamic stress in low critical stress state.The expressions of the static stress induced by coal mining and dynamic stress induced by mining tremors were obtained.Moreover,theories and technologies at home and abroad were summarized concerning the monitoring,forecasting,and preventing of rockburst.These mainly include the zoning and leveling forecasting method,electromagnetic radiation technology,elastic wave and seismic wave computed tomography technologies in aspect of rockburst monitoring,as well as the intensity weakening theory,the strong-soft-strong structure effect,the directional hydraulic fracturing technology,the roadway support system in regards of rockburst prevention.The prospect of rockburst development suggested that researches concerning the rockburst mechanism should be quantitatively developed around the roadway and coalface surrounding coal-rock mass.It should be focused on the rockburst mechanism and prevention technology of mining with over 1,000 km deep and mining in large tectonic zone.In addition,the monitoring and prevention of rockburst should be based on rockburst mechanism.
基金The study was supported by“The Operational Application of the HY-l Satellite Data to the Sea Ice Forecasting Projet"the National Natural Science Foundation Projects of China under contract Nos 40233032 and 40376006,"Tenth Five-Year Plan”Science and Tech-nology Programme under contract Nos 2001BA603B-03 and 2001CB721006+1 种基金“The Antarctic Earth Environment Monitoring and Key Processes Research"Project under contract No.200lDIA50040 “863"Youth Sci-entists Foundation Project of China under contract No.2002AA639340.
文摘The HY-1A satellite is the first oceanic satellite of China. During the winter of 2002-2003, the data of the HY-1A were applied to the sea ice monitoring and forecasting for the Bohai Sea of China for the first time. The sea ice retrieval system of the HY-1 A has been constructed. It receives 1B data from the satellite, outputs sea ice images and provides digital products of ice concentration, ice thickness and ice edge, which can be used as important information for sea ice monitoring and the initial fields of the numeric sea ice forecast and as one of the reference data for the sea ice forecasting verification. The sea ice retrieval system of the satellite is described, including its processes, methods and parameters. The retrieving results and their application to the sea ice monitoring and forecasting for the Bohai Sea are also discussed.
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.42177143,42277461)the Science Foundation for Distinguished Young Scholars of Sichuan Province(Grant No.2020JDJQ0011).Thanks to the Chn Energy Dadu River Hydropower Development Co.,Ltd,China Three Gorges Construction Engineering Corporation,Yalong River Hydropower Development Company,Ltd,Power China Chengdu Engineering Co.,Ltd,Power China Northwest Engineering Co.,Ltd,Power China Sinohydro Bureau 7 Co.,Ltd,China Gezhouba Group No.1 Engineering Co.,Ltd.,and the 5th Engineering Co.,Ltd.of China Railway Construction Bridge Engineering Bureau Group for the support and assistance.
文摘The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.
基金Supported by the National Natural Science Foundation of China (No.50378041) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.2003487016).
文摘Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-time coordinate of an object in a certain coordinate system can be obtained, and further dynamic displacement data and curve of the object can also be achieved. That is, automatic gathering and real-time processing of data can be carried out by this system simultaneously. For this system, first, an untouched monitoring technique is adopted, which can monitor or detect objects several to hundreds of meters apart; second, it has flexible installation condition and good monitoring precision of sub-millimeter degree; third, it is fit for dynamic, quasi-dynamic and static monitoring of large engineering structures. Through several tests and applications in large bridges, good reliability and dominance of the system is proved.
基金This research was funded by the Key Research and Development Plan of Jiangsu Province under grant BE2017735.Q.S.conceived the study and wrote the manuscript.Q.S.,C.C.,H.G.X.W.collected,analyzed,and interpreted the data.H.G.and X.W.contributed substantially to the development of ECG signal conversion Matlab software and remote automatic detection algorithm.J.L.,M.C.and C.L.revised the manuscript,evaluated and supervised the study.
文摘Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.
基金This work is supported by the National Natural Science Foundation of China(Grant No.51991392)Key Deployment Projects of Chinese Academy of Sciences(Grant No.ZDRW-ZS-2021-3-3)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.
基金supported by the Innovative Research Groups of National Natural Science Foundation of China(No. 51621092)National Basic Research Program of China ("973" Program, No. 2013CB035904)National Natural Science Foundation of China (No. 51439005)
文摘During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.
基金The Science and Technoloav Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020-A11-02)is appreciated for supporting this study.
文摘Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.
基金National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAB10B06)Independent Innovation Foundation of Tianjin University (No. 1102119)
文摘The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.
基金the China Earthquake Network Center Seismic Network Department Daily Operation and Maintenance Funding Support(1950411001)
文摘The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In recent years,with the continuous improvement of monitoring technology and increase of public demands,the original real-time monitoring system needs to be upgraded and improved in terms of timeliness,stability,accuracy and ease of operation.Therefore,by accessing a total of more than 1,000 seismic stations,reducing the seismic trigger threshold of the monitoring system,eliminating the false trigger stations and optimizing the seismic waveform display interface,the current earthquake monitoring demands can be satisfied on the basis of ensuring the stable operation of the system.
基金supported by the National Natural Science Foundation of China (under grants 41874048,41790464,41790462).
文摘A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.
文摘Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology has been applied to monitor regional average concen- trations and inventory of nitrogen dioxide, sulfur dioxide and ozone. DOAS system was set up and applied to monitor the main air pollutants in Huaibei area. Monitoring data were obtained from 7 to 28 August, 2011. Monitoring results show measurements in controlling pollution are effective, and emissions of pollutants are up to the national standard in Huaibei area. Prediction model was also created to track changing trend of pollutions. These will provide raw data support for effective evaluation of environmental quality in Huaibei area.