Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introdu...Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introduce a monitoring method capable of non-contact original-state online real-time monitoring for strongly coated, high-salinity, and multi-component liquids. The principle of the method is to establish the relationship among the concentration of the target substance in the liquid (C), the color space coor- dinates of the target substance at different concentrations (L*, a*, b*), and the maximum absorption wave- length (λmax); subsequently, the optimum wavelength λT of the liquid is determined by a high-precision scanning-type monitoring system that is used to detect the instantaneous concentration of the target substance in the flowing liquid. Unlike traditional monitoring methods and existing online monitoring methods, the proposed method does not require any pretreatment of the samples (i.e., filtration, dilution, oxidation/reduction, addition of chromogenic agent, constant volume, etc.), and it is capable of original- state online real-time monitoring. This method is employed at a large electrolytic manganese plant to monitor the Fe3. concentration in the colloidal process of the plant's aging liquid (where the concentra- tions of Fe3+, Mn2+, and (NH4)2SO4 are 0.5-18 mg.L 1, 35-39 g.L 1, and 90-110 g.L 1, respectively). The relative error of this monitoring method compared with an off-line laboratory monitoring is less than 2%.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining...The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.展开更多
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing maj...The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.展开更多
To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation w...To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system.展开更多
The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme ...The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme of soil moisture content in paddy field was put forward from two key links of soil moisture content monitoring and field water-layer monitoring. This scheme could meet the alternative monitoring requirements of soil moisture content in water layer and none-water layer. It had a good maneuverability and could provide references for practical work.展开更多
In this research,an auxiliary illumination visual sensor system,an ultraviolet/visible(UVV)band visual sensor system(with a wavelength less than 780 nm),a spectrometer,and a photodiode are employed to capture insights...In this research,an auxiliary illumination visual sensor system,an ultraviolet/visible(UVV)band visual sensor system(with a wavelength less than 780 nm),a spectrometer,and a photodiode are employed to capture insights into the high-power disc laser welding process.The features of the visible optical light signal and the reflected laser light signal are extracted by decomposing the original signal captured by the photodiode via the wavelet packet decomposition(WPD)method.The captured signals of the spectrometer mainly have a wavelength of 400-900 nm,and are divided into 25 sub-bands to extract the spectrum features by statistical methods.The features of the plume and spatters are acquired by images captured by the UVV visual sensor system,and the features of the keyhole are extracted from images captured by the auxiliary illumination visual sensor system.Based on these real-time quantized features of the welding process,a deep belief network(DBN)is established to monitor the welding status.A genetic algorithm is applied to optimize the parameters of the proposed DBN model.The established DBN model shows higher accuracy and robustness in monitoring welding status in comparison with a traditional back-propagation neural network(BPNN)model.The effectiveness and generalization ability of the proposed DBN are validated by three additional experiments with different welding parameters.展开更多
Considering its structural features, geometric shapes, service mode, environmental media, mechanical behavior, etc, the special nature and complexity of tailings dam were summarized. The technical approach to safety m...Considering its structural features, geometric shapes, service mode, environmental media, mechanical behavior, etc, the special nature and complexity of tailings dam were summarized. The technical approach to safety management for tailings dam was proposed, which is the on-line automated monitoring and early warning information. The results show that a strong theoretical basis can be provided for security monitoring and security management of tailings dam. Online automated monitoring system for tailings dam has full implementation of the information. It is applied widely in Lingnan gold mine, Xiadian gold mine and Hedong gold mine in Zhaoyuan, Shandong Province, and achieves good effect.展开更多
Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-t...Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-time coordinate of an object in a certain coordinate system can be obtained, and further dynamic displacement data and curve of the object can also be achieved. That is, automatic gathering and real-time processing of data can be carried out by this system simultaneously. For this system, first, an untouched monitoring technique is adopted, which can monitor or detect objects several to hundreds of meters apart; second, it has flexible installation condition and good monitoring precision of sub-millimeter degree; third, it is fit for dynamic, quasi-dynamic and static monitoring of large engineering structures. Through several tests and applications in large bridges, good reliability and dominance of the system is proved.展开更多
A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is ba...A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermaUy insulated. Combining this model with the control-volume method provides temperatures at different points on a cross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonstrated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.展开更多
The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advanta...The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.展开更多
Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical...Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.展开更多
This paper proposed an online monitoring and early-warning system of dynamic stress of crane metal structure, and designed this system’s hardware,including sensor unit,data gathering unit,and controlling & proces...This paper proposed an online monitoring and early-warning system of dynamic stress of crane metal structure, and designed this system’s hardware,including sensor unit,data gathering unit,and controlling & processing unit of this sys- tem,and discussed the waterproof protection for resistance strain wafer and scheme of data gathering and transmission of dynamic strain gauge,moreover developed system software of real-time and online monitoring dynamic stress,including data gathering by DLL and data display & processing based on Visual C++.The system applies the dynamic strain gauge to gather the data of the stress,and communicates between PLC control system of crane and upper industrial computer,so that realize the real-time online monitoring and early-warning for crane’s metal structure stress.The test results show this system carry on real time and online monitoring to dynamic stress of loud-bearing metal structure longly and stability,and can give an alarm and overload protection on time.So the system has good practice value.展开更多
A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling...A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.展开更多
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i...Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.展开更多
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and...During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.展开更多
Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background...Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.展开更多
文摘Failures are very common during the online real-time monitoring of large quantities of complex liquids in industrial processes, and can result in excessive resource consumption and pollution. In this study, we introduce a monitoring method capable of non-contact original-state online real-time monitoring for strongly coated, high-salinity, and multi-component liquids. The principle of the method is to establish the relationship among the concentration of the target substance in the liquid (C), the color space coor- dinates of the target substance at different concentrations (L*, a*, b*), and the maximum absorption wave- length (λmax); subsequently, the optimum wavelength λT of the liquid is determined by a high-precision scanning-type monitoring system that is used to detect the instantaneous concentration of the target substance in the flowing liquid. Unlike traditional monitoring methods and existing online monitoring methods, the proposed method does not require any pretreatment of the samples (i.e., filtration, dilution, oxidation/reduction, addition of chromogenic agent, constant volume, etc.), and it is capable of original- state online real-time monitoring. This method is employed at a large electrolytic manganese plant to monitor the Fe3. concentration in the colloidal process of the plant's aging liquid (where the concentra- tions of Fe3+, Mn2+, and (NH4)2SO4 are 0.5-18 mg.L 1, 35-39 g.L 1, and 90-110 g.L 1, respectively). The relative error of this monitoring method compared with an off-line laboratory monitoring is less than 2%.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金supported by the Natural Science Foundation of Shanxi Province,China(202203021211153)National Natural Science Foundation of China(51704205).
文摘The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
文摘The continuous operation of On-Load Tap-Changers (OLTC) is essential for maintaining stable voltage levels in power transmission and distribution systems. Timely fault detection in OLTC is essential for preventing major failures and ensuring the reliability of the electrical grid. This research paper proposes an innovative approach that combines voiceprint detection using MATLAB analysis for online fault monitoring of OLTC. By leveraging advanced signal processing techniques and machine learning algorithms in MATLAB, the proposed method accurately detects faults in OLTC, providing real-time monitoring and proactive maintenance strategies.
文摘To optimize the self-organization network, self-adaptation, real-time monitoring, remote management capability, and equipment reuse level of the meteorological station supporting the portable groundwater circulation wells, and to provide real-time and effective technical services and environmental data support for groundwater remediation, a real-time monitoring system design of the meteorological station supporting the portable groundwater circulation wells based on the existing equipment is proposed. A variety of environmental element information is collected and transmitted to the embedded web server by the intelligent weather transmitter, and then processed by the algorithm and stored internally, displayed locally, and published on the web. The system monitoring algorithm and user interface are designed in the CNWSCADA development environment to realize real-time processing and analysis of environmental data and monitoring, control, management, and maintenance of the system status. The PLC-controlled photovoltaic power generating panels and lithium battery packs are in line with the concept of energy saving and emission reduction, and at the same time, as an emergency power supply to guarantee the safety of equipment and data when the utility power fails to meet the requirements. The experiment proves that the system has the characteristics of remote control, real-time interaction, simple station deployment, reliable operation, convenient maintenance, and green environment protection, which is conducive to improving the comprehensive utilization efficiency of various types of environmental information and providing reliable data support, theoretical basis and guidance suggestions for the research of groundwater remediation technology and its disciplines, and the research and development of the movable groundwater cycling well monitoring system.
文摘The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme of soil moisture content in paddy field was put forward from two key links of soil moisture content monitoring and field water-layer monitoring. This scheme could meet the alternative monitoring requirements of soil moisture content in water layer and none-water layer. It had a good maneuverability and could provide references for practical work.
基金This work was partly supported by the National Natural Science Foundation of China(51675104 and 61703110)the Science and Technology Planning Project of Guangzhou,China(201707010197)+2 种基金the Innovation Team Project,Department of Education of Guangdong Province,China(2017KCXTD010)the Guangdong Provincial Natural Science Foundation of China(2017A030310494 and 2016A030310347)the Youth Science Foundation of Guangdong University of Technology(16ZK0010).
文摘In this research,an auxiliary illumination visual sensor system,an ultraviolet/visible(UVV)band visual sensor system(with a wavelength less than 780 nm),a spectrometer,and a photodiode are employed to capture insights into the high-power disc laser welding process.The features of the visible optical light signal and the reflected laser light signal are extracted by decomposing the original signal captured by the photodiode via the wavelet packet decomposition(WPD)method.The captured signals of the spectrometer mainly have a wavelength of 400-900 nm,and are divided into 25 sub-bands to extract the spectrum features by statistical methods.The features of the plume and spatters are acquired by images captured by the UVV visual sensor system,and the features of the keyhole are extracted from images captured by the auxiliary illumination visual sensor system.Based on these real-time quantized features of the welding process,a deep belief network(DBN)is established to monitor the welding status.A genetic algorithm is applied to optimize the parameters of the proposed DBN model.The established DBN model shows higher accuracy and robustness in monitoring welding status in comparison with a traditional back-propagation neural network(BPNN)model.The effectiveness and generalization ability of the proposed DBN are validated by three additional experiments with different welding parameters.
基金Projects(50874064,50804026,50904039)supported by the National Natural Science Foundation of ChinaProject(200804290002)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(G2010F10)supported by S&T Plan Project from Shandong Provincial Education Department
文摘Considering its structural features, geometric shapes, service mode, environmental media, mechanical behavior, etc, the special nature and complexity of tailings dam were summarized. The technical approach to safety management for tailings dam was proposed, which is the on-line automated monitoring and early warning information. The results show that a strong theoretical basis can be provided for security monitoring and security management of tailings dam. Online automated monitoring system for tailings dam has full implementation of the information. It is applied widely in Lingnan gold mine, Xiadian gold mine and Hedong gold mine in Zhaoyuan, Shandong Province, and achieves good effect.
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
基金Supported by the National Natural Science Foundation of China (No.50378041) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.2003487016).
文摘Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-time coordinate of an object in a certain coordinate system can be obtained, and further dynamic displacement data and curve of the object can also be achieved. That is, automatic gathering and real-time processing of data can be carried out by this system simultaneously. For this system, first, an untouched monitoring technique is adopted, which can monitor or detect objects several to hundreds of meters apart; second, it has flexible installation condition and good monitoring precision of sub-millimeter degree; third, it is fit for dynamic, quasi-dynamic and static monitoring of large engineering structures. Through several tests and applications in large bridges, good reliability and dominance of the system is proved.
基金Funded by the National Science and Technology Support Project of China (No. 2006BAA03B02-03)
文摘A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermaUy insulated. Combining this model with the control-volume method provides temperatures at different points on a cross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonstrated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.
基金Science and Technology Projects of Gansu Electric Power Company(No.52274514005W)
文摘The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.
基金This research was funded by the Key Research and Development Plan of Jiangsu Province under grant BE2017735.Q.S.conceived the study and wrote the manuscript.Q.S.,C.C.,H.G.X.W.collected,analyzed,and interpreted the data.H.G.and X.W.contributed substantially to the development of ECG signal conversion Matlab software and remote automatic detection algorithm.J.L.,M.C.and C.L.revised the manuscript,evaluated and supervised the study.
文摘Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.
基金Funded by the National Natural Science Fund grants 60574012
文摘This paper proposed an online monitoring and early-warning system of dynamic stress of crane metal structure, and designed this system’s hardware,including sensor unit,data gathering unit,and controlling & processing unit of this sys- tem,and discussed the waterproof protection for resistance strain wafer and scheme of data gathering and transmission of dynamic strain gauge,moreover developed system software of real-time and online monitoring dynamic stress,including data gathering by DLL and data display & processing based on Visual C++.The system applies the dynamic strain gauge to gather the data of the stress,and communicates between PLC control system of crane and upper industrial computer,so that realize the real-time online monitoring and early-warning for crane’s metal structure stress.The test results show this system carry on real time and online monitoring to dynamic stress of loud-bearing metal structure longly and stability,and can give an alarm and overload protection on time.So the system has good practice value.
基金the Korea Research Foundation Grant Funded by the Korean Government (MOEHRD) (KRF-2007-331-D00089) Funded by Seoul Development Institute (CS070160)
文摘A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.
基金This work is supported by the National Natural Science Foundation of China(Grant No.51991392)Key Deployment Projects of Chinese Academy of Sciences(Grant No.ZDRW-ZS-2021-3-3)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure.
基金supported by the Innovative Research Groups of National Natural Science Foundation of China(No. 51621092)National Basic Research Program of China ("973" Program, No. 2013CB035904)National Natural Science Foundation of China (No. 51439005)
文摘During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.
基金The Science and Technoloav Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020-A11-02)is appreciated for supporting this study.
文摘Monitoring and early warning is an important means to effectively prevent risks in agricultural production,consumption and price.In particular,with the change of modes of national administration against the background of big data,improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society,this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.Based on the data of the National Bureau of Statistics of China(NBSC)and survey data,this paper used a variety of statistical methods to determine the early warning thresholds of the production,consumption and prices of agricultural products.Combined with Delphi expert judgment correction method,it finally determined the early warning thresholds of agricultural product information in multiple time,and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.The results show that:(1)the daily,weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products;(2)the multitemporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information,provide a benchmarking standard for China's agricultural production,consumption and price monitoring and early warning at the national macro level,and further improve the application of China's agricultural product monitoring and early warning.