A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculat...A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculating speed and complete peripheral equipments, is very suitable to work as the controller of the digital power supply. The micro C/OS- Ⅱ transplanted in ARM, helps to improve the respondent speed against various welding signals, as well as the reliability of the controlling software. The welding process consists of nine tasks. The tasks of great significance on reliability of the welder, for example, the A/D conversion of current and voltage, enjoy top priority. To avoid simultaneous-sharing on A/D converter and LCD module, two semaphores are introduced in to ensure the smooth performance of the welding power supply. Proven by experiments ,the ARM and the micro C/OS- Ⅱ can greatly improve both the respondent speed and the reliability of the digital welder.展开更多
This article presents an embedded Smart Phone Operating System (SPOS) independently designed by ZTE Corporation. The SPOS is based on single kernel architecture with its multi-task real-time kernel supporting hardware...This article presents an embedded Smart Phone Operating System (SPOS) independently designed by ZTE Corporation. The SPOS is based on single kernel architecture with its multi-task real-time kernel supporting hardware platforms and resources of mainstream mobile phones. It has remarkable advantages such as highly efficient and dynamic power management, priority - based preemptive scheduling, fast startup, a variety of drivers, and excellent system stability and operability. For the development of upper layer communication protocols and application software, the SPOS provides wireless communication interfaces and the application program framework.展开更多
This paper discusses the real-time operating system (RTOS) of a computer numericalcontrol machine tool. It includes the characteristic, structure, function sub-routines, managementand communication.There are mainly t...This paper discusses the real-time operating system (RTOS) of a computer numericalcontrol machine tool. It includes the characteristic, structure, function sub-routines, managementand communication.There are mainly two structures of CNC' RTOS. They are foreground-background type andinterrupt type. In this paper we discuss mainly the method of job management, andcommunicaton of the two types.展开更多
This paper presents a new architecture of a graphics system for microkernel operating systems,including real-time operating systems.The following major parts of the architecture are presented:a user-level subsystem re...This paper presents a new architecture of a graphics system for microkernel operating systems,including real-time operating systems.The following major parts of the architecture are presented:a user-level subsystem responsible for interaction with user applications;a bottom-level subsystem providing the functionality for graphics drivers,such as managing graphics output,video memory management,etc.;a kernel-level subsystem providing interaction with the kernel,and performing low-level operations,such as working with physical memory,processes,etc.The mechanisms of interaction of user applications with the user level of the graphics system,as well as interaction of the different levels of the graphics subsystem are presented.The paper pays much attention to various approaches to testing:the use of unit testing,testing using hardware and software emulators.Another important characteristic of a graphics system is its performance,in particular the performance of low-level operations such as memory allocation:the developed architecture suggests using a separate memory allocator which is faster than standard memory allocation functions.Comparison of the performances of graphics system implementation for microkernel real-time operating system and graphics server Xorg is presented,showing significant superiority of the proposed architecture in a number of work scenarios.展开更多
With the flourishing development of Unmanned Aerial Vehicles(UAVs), the mission tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating System(RTOS) that provides operating environments fo...With the flourishing development of Unmanned Aerial Vehicles(UAVs), the mission tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating System(RTOS) that provides operating environments for various mission services on these UAVs has become crucial, which leads to the necessity of having a deep understanding of an RTOS. In this paper, an empirical study is conducted on FreeRTOS, a commonly used RTOS for UAVs, from a complex network perspective. A total of 85 releases of FreeRTOS, from V2.4.2 to V10.0.0, are modeled as directed networks, in which the nodes represent functions and the edges denote function calls. It is found that the size of the FreeRTOS network has grown almost linearly with the evolution of the versions, while its main core has evolved steadily. In addition, a k-core analysis-based metric is proposed to identify major functionality changes of FreeRTOS during its evolution.The result shows that the identified versions are consistent with the version change logs. Finally,it is found that the clustering coefficient of the Linux OS scheduler is larger than that of the FreeRTOS scheduler. In conclusion, the empirical results provide useful guidance for developers and users of UAV RTOSs.展开更多
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient...Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.展开更多
One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. Th...One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. The recent trend in operating system development is adopting microkernel architecture which holds such advantages as microminiaturization, modularity, portability and extendibility. The performance of I/O subsystem is currently receiving considerable research attention. Object-orientation offers an approach to application development in which software system can be constructed by composing and refining the pre-designed plug-compatible software components.It also starts with some basic notions fairly well accepted in computer science, namely encapsulation and reuse. In this paper, a new object-oriented real-time I/O subsystem model has been designed.In this model, the traditional I/O subsystem framework is discarded and a stream mechanism based on the object-oriented concept is introduced. In addition, the I/O requests are classified according to their time emergency to obtain real-time performance. So, this model meets such satelliteperformance requirements as reliability, flexibility, portability and real-time performance.展开更多
One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance....One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance. The recent trend in operating system development is adopting microkernel architecture that holds such advantages as microminiaturization, modularity, portability and extendibility. IPC is the key of microkernel design. Message-based IPC mechanism is generally used in existing microkernel Operating system. It is of consistency, safety and reliability.However, it can not provide efficient support for real-time applications in satellite systems and it only applies to loose coupling multi-processor architecture. In this paper, an improvement solution for existing message-based IPC is proposed at first to obtain real-time performance. Then a new IPC mechanism is designed. It particulary applies to shared memory tight coupling multi-processor architecture.展开更多
This paper proposes a collaborative design model based on operation semantics in a distributed computer-aided design (CAD) environment. The goal is to reduce time consumption in data format conversion and the requirem...This paper proposes a collaborative design model based on operation semantics in a distributed computer-aided design (CAD) environment. The goal is to reduce time consumption in data format conversion and the requirement of network bandwidth so as to improve the cooperative ability and the synchronization efficiency. Firstly, real-time collaborative design is reviewed and three kinds of real-time collaborative design models are discussed. Secondly, the concept of operation semantics is defined and the framework of an operation semantics model is presented. The operation semantics carries the original design data and actual operation process to express design intent and operation activity in conventional CAD systems. Finally, according to the operation semantics model, a CAD operation primitive is defined which can be retrieved from and mapped to the local CAD system operation commands; a distributed CAD collaborative architecture based on the model is presented, and an example is given to verify the model.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC_GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this pa...The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC_GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC_GODAS2.0 for the user community. BCC_GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 (MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC_GODAS2.0 reanalysis are compared and assessed with observations for 1990-201 I. The climatology of the mixed layer depth of BCC_GODAS2.0 is generally in agreement with that of World Ocean Atlas 2001. The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC_GODAS2.0 are evaluated. The standard deviation of the SST in BCC_GODAS2.0 agrees well with observations in the tropical Pacific. BCC_GODAS2.0 is able to capture the main features of E1 Nifio Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of E1 Nino Modoki are also reproduced.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
The main objective of this study is to determine the hydrogeochemical specificities of the groundwater of the Angovia mine operating permit, located in the Yaouré mountains in the center-west of Côte d’Ivoi...The main objective of this study is to determine the hydrogeochemical specificities of the groundwater of the Angovia mine operating permit, located in the Yaouré mountains in the center-west of Côte d’Ivoire. To do so, descriptive and multivariate statistical analysis methods with the SOM (Self Organizing Maps) algorithm were applied to the physicochemical parameters of 17 boreholes using the calcite (ISC) and dolomite (ISD) saturation indices. The results obtained have shown that the groundwater in the Angovia mine operating permit area has an average temperature of 27.52°C (long rainy season) and 27.87°C (long dry season) and has an average pH of 7.09 ± 0.35 during the main rainy season and 7.32 ± 0.35 during the main dry season. They are mineralized with an average electrical conductivity of 505.98 ± 302.85 μS/cm during the long rainy season and with 450.33 ± 233.74 μS/cm as average during the long dry season. The main phenomena at the origin of groundwater mineralization are water residence time, oxidation-reduction and surface inflow. The study of the relative age of the water shows that the groundwater in the Angovia mine operating permit area is mainly undersaturated with respect to calcite and dolomite. They are therefore very old in the aquifer with a slow circulation speed during the long rainy season and the long dry season.展开更多
Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time sched...Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.展开更多
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the...The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.展开更多
To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 50575074by the Scientific and TechnologicalProject of Guangdong Province, China, under Grant No 2003A1040310
文摘A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculating speed and complete peripheral equipments, is very suitable to work as the controller of the digital power supply. The micro C/OS- Ⅱ transplanted in ARM, helps to improve the respondent speed against various welding signals, as well as the reliability of the controlling software. The welding process consists of nine tasks. The tasks of great significance on reliability of the welder, for example, the A/D conversion of current and voltage, enjoy top priority. To avoid simultaneous-sharing on A/D converter and LCD module, two semaphores are introduced in to ensure the smooth performance of the welding power supply. Proven by experiments ,the ARM and the micro C/OS- Ⅱ can greatly improve both the respondent speed and the reliability of the digital welder.
文摘This article presents an embedded Smart Phone Operating System (SPOS) independently designed by ZTE Corporation. The SPOS is based on single kernel architecture with its multi-task real-time kernel supporting hardware platforms and resources of mainstream mobile phones. It has remarkable advantages such as highly efficient and dynamic power management, priority - based preemptive scheduling, fast startup, a variety of drivers, and excellent system stability and operability. For the development of upper layer communication protocols and application software, the SPOS provides wireless communication interfaces and the application program framework.
文摘This paper discusses the real-time operating system (RTOS) of a computer numericalcontrol machine tool. It includes the characteristic, structure, function sub-routines, managementand communication.There are mainly two structures of CNC' RTOS. They are foreground-background type andinterrupt type. In this paper we discuss mainly the method of job management, andcommunicaton of the two types.
基金This work was supported by SRISA RAS fundamental scientific research 47 GP(No.FNEF-2022-0022).
文摘This paper presents a new architecture of a graphics system for microkernel operating systems,including real-time operating systems.The following major parts of the architecture are presented:a user-level subsystem responsible for interaction with user applications;a bottom-level subsystem providing the functionality for graphics drivers,such as managing graphics output,video memory management,etc.;a kernel-level subsystem providing interaction with the kernel,and performing low-level operations,such as working with physical memory,processes,etc.The mechanisms of interaction of user applications with the user level of the graphics system,as well as interaction of the different levels of the graphics subsystem are presented.The paper pays much attention to various approaches to testing:the use of unit testing,testing using hardware and software emulators.Another important characteristic of a graphics system is its performance,in particular the performance of low-level operations such as memory allocation:the developed architecture suggests using a separate memory allocator which is faster than standard memory allocation functions.Comparison of the performances of graphics system implementation for microkernel real-time operating system and graphics server Xorg is presented,showing significant superiority of the proposed architecture in a number of work scenarios.
基金supported by the National Natural Science Foundation of China (No. 61772055)Equipment Preliminary R&D Project of China (No. 41402020102)
文摘With the flourishing development of Unmanned Aerial Vehicles(UAVs), the mission tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating System(RTOS) that provides operating environments for various mission services on these UAVs has become crucial, which leads to the necessity of having a deep understanding of an RTOS. In this paper, an empirical study is conducted on FreeRTOS, a commonly used RTOS for UAVs, from a complex network perspective. A total of 85 releases of FreeRTOS, from V2.4.2 to V10.0.0, are modeled as directed networks, in which the nodes represent functions and the edges denote function calls. It is found that the size of the FreeRTOS network has grown almost linearly with the evolution of the versions, while its main core has evolved steadily. In addition, a k-core analysis-based metric is proposed to identify major functionality changes of FreeRTOS during its evolution.The result shows that the identified versions are consistent with the version change logs. Finally,it is found that the clustering coefficient of the Linux OS scheduler is larger than that of the FreeRTOS scheduler. In conclusion, the empirical results provide useful guidance for developers and users of UAV RTOSs.
基金Project (No. 2004CB217901) supported by the National Basic Re-search Program (973) of China
文摘Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.
文摘One of the most important features of modern minor satellites is to realize autonomous moving. The performance of the satellite autonomous computer operating system acting as the control center is utmost important. The recent trend in operating system development is adopting microkernel architecture which holds such advantages as microminiaturization, modularity, portability and extendibility. The performance of I/O subsystem is currently receiving considerable research attention. Object-orientation offers an approach to application development in which software system can be constructed by composing and refining the pre-designed plug-compatible software components.It also starts with some basic notions fairly well accepted in computer science, namely encapsulation and reuse. In this paper, a new object-oriented real-time I/O subsystem model has been designed.In this model, the traditional I/O subsystem framework is discarded and a stream mechanism based on the object-oriented concept is introduced. In addition, the I/O requests are classified according to their time emergency to obtain real-time performance. So, this model meets such satelliteperformance requirements as reliability, flexibility, portability and real-time performance.
文摘One of the most important features of modem minor satellites is to realize autonomous moving. The perfomance of the satellite autonomous computer operating system acting as the control center is of utrnost importance. The recent trend in operating system development is adopting microkernel architecture that holds such advantages as microminiaturization, modularity, portability and extendibility. IPC is the key of microkernel design. Message-based IPC mechanism is generally used in existing microkernel Operating system. It is of consistency, safety and reliability.However, it can not provide efficient support for real-time applications in satellite systems and it only applies to loose coupling multi-processor architecture. In this paper, an improvement solution for existing message-based IPC is proposed at first to obtain real-time performance. Then a new IPC mechanism is designed. It particulary applies to shared memory tight coupling multi-processor architecture.
文摘This paper proposes a collaborative design model based on operation semantics in a distributed computer-aided design (CAD) environment. The goal is to reduce time consumption in data format conversion and the requirement of network bandwidth so as to improve the cooperative ability and the synchronization efficiency. Firstly, real-time collaborative design is reviewed and three kinds of real-time collaborative design models are discussed. Secondly, the concept of operation semantics is defined and the framework of an operation semantics model is presented. The operation semantics carries the original design data and actual operation process to express design intent and operation activity in conventional CAD systems. Finally, according to the operation semantics model, a CAD operation primitive is defined which can be retrieved from and mapped to the local CAD system operation commands; a distributed CAD collaborative architecture based on the model is presented, and an example is given to verify the model.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金supported by the National Natural Science Foundation of China (Grant No. 41306005)the National Basic Research Program of China (Grant No. 2012CB955903)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC_GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC_GODAS2.0 for the user community. BCC_GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 (MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC_GODAS2.0 reanalysis are compared and assessed with observations for 1990-201 I. The climatology of the mixed layer depth of BCC_GODAS2.0 is generally in agreement with that of World Ocean Atlas 2001. The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC_GODAS2.0 are evaluated. The standard deviation of the SST in BCC_GODAS2.0 agrees well with observations in the tropical Pacific. BCC_GODAS2.0 is able to capture the main features of E1 Nifio Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of E1 Nino Modoki are also reproduced.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
文摘The main objective of this study is to determine the hydrogeochemical specificities of the groundwater of the Angovia mine operating permit, located in the Yaouré mountains in the center-west of Côte d’Ivoire. To do so, descriptive and multivariate statistical analysis methods with the SOM (Self Organizing Maps) algorithm were applied to the physicochemical parameters of 17 boreholes using the calcite (ISC) and dolomite (ISD) saturation indices. The results obtained have shown that the groundwater in the Angovia mine operating permit area has an average temperature of 27.52°C (long rainy season) and 27.87°C (long dry season) and has an average pH of 7.09 ± 0.35 during the main rainy season and 7.32 ± 0.35 during the main dry season. They are mineralized with an average electrical conductivity of 505.98 ± 302.85 μS/cm during the long rainy season and with 450.33 ± 233.74 μS/cm as average during the long dry season. The main phenomena at the origin of groundwater mineralization are water residence time, oxidation-reduction and surface inflow. The study of the relative age of the water shows that the groundwater in the Angovia mine operating permit area is mainly undersaturated with respect to calcite and dolomite. They are therefore very old in the aquifer with a slow circulation speed during the long rainy season and the long dry season.
基金supported by the National Key R&D Program of China (2018YFA0702200)the Fundamental Research Funds of Shandong University。
文摘Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875031,52242507)Beijing Municipal Natural Science Foundation of China(Grant No.3212010)Beijing Municipal Youth Backbone Personal Project of China(Grant No.2017000020124 G018).
文摘The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.