期刊文献+
共找到141,145篇文章
< 1 2 250 >
每页显示 20 50 100
A Framework of LSTM Neural Network Model in Multi-Time Scale Real-Time Prediction of Ship Motions in Head Waves
1
作者 CHEN Zhan-yang ZHAN Zheng-yong +2 位作者 CHANG Shao-ping XU Shao-feng LIU Xing-yun 《船舶力学》 EI CSCD 北大核心 2024年第12期1803-1819,共17页
Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive act... Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions. 展开更多
关键词 deep learning LSTM ship motion real-time prediction irregular waves
下载PDF
Comparative Analysis of Machine Learning Models for Stock Price Prediction: Leveraging LSTM for Real-Time Forecasting
2
作者 Bijay Gautam Sanif Kandel +1 位作者 Manoj Shrestha Shrawan Thakur 《Journal of Computer and Communications》 2024年第8期52-80,共29页
The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agil... The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agile Scrum and the Obtain, Scrub, Explore, Model, and iNterpret (OSEMN) methodology. Six machine learning models, namely Linear Forecast, Naive Forecast, Simple Moving Average with weekly window (SMA 5), Simple Moving Average with monthly window (SMA 20), Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM), are compared and evaluated through Mean Absolute Error (MAE), with the LSTM model performing the best, showcasing its potential for practical financial applications. A Django web application “Predict It” is developed to implement the LSTM model. Ethical concerns related to predictive modeling in finance are addressed. Data quality, algorithm choice, feature engineering, and preprocessing techniques are emphasized for better model performance. The research acknowledges limitations and suggests future research directions, aiming to equip investors and financial professionals with reliable predictive models for dynamic markets. 展开更多
关键词 Stock Price prediction Machine Learning LSTM ARIMA Mean Squared Error
下载PDF
Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks(MANETS)
3
作者 Ahmed Alhussen Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第5期1903-1923,共21页
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne... Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities. 展开更多
关键词 Mobile AdHocNetworks(MANET) urban traffic prediction artificial intelligence(AI) traffic congestion chaotic spatial fuzzy polynomial neural network(CSFPNN)
下载PDF
Real-Time Co-optimization of Gear Shifting and Engine Torque for Predictive Cruise Control of Heavy-Duty Trucks
4
作者 Hongqing Chu Xiaoxiang Na +4 位作者 Huan Liu Yuhai Wang Zhuo Yang Lin Zhang Hong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期294-317,共24页
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea... Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time. 展开更多
关键词 Heavy-duty truck predictive cruise control Model predictive control Pontryagin’s maximum principle Real-truck implementation
下载PDF
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:6
5
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 Tunnel boring machine(TBM) real-time cutter-head torque prediction Bidirectional long short-term memory (BLSTM) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
下载PDF
Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data 被引量:2
6
作者 Xuyan Tan Weizhong Chen +2 位作者 Tao Zou Jianping Yang Bowen Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期886-895,共10页
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i... Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure. 展开更多
关键词 Shied tunnel Machine learning MONITORING real-time prediction Data analysis
下载PDF
Real-time 3-D space numerical shake prediction for earthquake early warning 被引量:3
7
作者 Tianyun Wang Xing Jin +1 位作者 Yandan Huang Yongxiang Wei 《Earthquake Science》 CSCD 2017年第5期269-281,共13页
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of sour... In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model. 展开更多
关键词 real-time numerical shake prediction· 3-Dspace model · Radiative transfer theory · Data assimilation
下载PDF
Real-time multi-step prediction control for BP network with delay 被引量:8
8
作者 张吉礼 欧进萍 于达仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第2期82-86,共5页
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i... Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system. 展开更多
关键词 DELAYED time system multi STEP prediction BP network COMPENSATION of DYNAMICAL characteristics fuzzy control simulation
下载PDF
Real-time rear-end crash potential prediction on freeways 被引量:2
9
作者 QU Xu WANG Wei +1 位作者 WANG Wen-fu LIU Pan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2664-2673,共10页
This study develops new real-time freeway rear-end crash potential predictors using support vector machine(SVM) technique. The relationship between rear-end crash occurrences and traffic conditions were explored using... This study develops new real-time freeway rear-end crash potential predictors using support vector machine(SVM) technique. The relationship between rear-end crash occurrences and traffic conditions were explored using historical loop detector data from Interstate-894 in Milwaukee, Wisconsin, USA. The extracted loop detection data were aggregated over different stations and time intervals to produce explanatory features. A feature selection process, which addresses the interaction between SVM classifiers and explanatory features, was adopted to identify the features that significantly influence rear-end crashes. Afterwards, the identified significant explanatory features over three separate time levels were used to train three SVM models. In the end, the multi-layer perceptron(MLP) artificial neural network models were used as benchmarks to evaluate the performance of SVM models. The results show that the proposed feature selection procedure greatly enhances the accuracy and generalization capability of SVM models. Moreover, the optimal SVM classifier achieves 81.1% overall prediction precision rate. In comparison with MLP artificial neural networks, SVM models provide better results in terms of crash prediction accuracy and false positive rate, which confirms the superior performance of SVM technique in rear-end crash potential prediction analysis. 展开更多
关键词 FREEWAY rear-end CRASH CRASH POTENTIAL prediction CRASH precursors case control strategy support vector machine
下载PDF
Real-time crash prediction on freeways using data mining and emerging techniques 被引量:4
10
作者 Jinming You Junhua Wang Jingqiu Guo 《Journal of Modern Transportation》 2017年第2期116-123,共8页
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with... Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways. 展开更多
关键词 Crash prediction detectors Web-crawl data Real time - Discrete loop Support vector machines
下载PDF
An Effective Approach for Improving the Real-Time Prediction of Summer Rainfall over China 被引量:3
11
作者 LANG Xian-Mei 《Atmospheric and Oceanic Science Letters》 2011年第2期75-80,共6页
This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach ... This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach to improve the predictions made by the model. First, a set of hindcast experiments for summer climate over China during 1982-2010 are performed from the perspective of real-time prediction with the IAP9L-AGCM model and the IAP ENSO prediction system. Then a new approach that effectively combines the hind-cast with its correction is proposed to further improve the model's predictive ability. A systematic evaluation reveals that the model's real-time predictions for 41 stations across China show significant improvement using this new approach, especially in the lower reaches between the Yellow River and Yangtze River valleys. 展开更多
关键词 predictive ability IAP9L-AGCM summer rainfall over China
下载PDF
Real-time numerical shake prediction and updating for earthquake early warning
12
作者 Tianyun Wang Xing Jin +1 位作者 Yongxiang Wei Yandan Huang 《Earthquake Science》 CSCD 2017年第5期251-267,共17页
Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and pre- cisely... Ground motion prediction is important for earthquake early warning systems, because the region's peak ground motion indicates the potential disaster. In order to predict the peak ground motion quickly and pre- cisely with limited station wave records, we propose a real- time numerical shake prediction and updating method. Our method first predicts the ground motion based on the ground motion prediction equation after P waves detection of several stations, denoted as the initial prediction. In order to correct the prediction error of the initial prediction, an updating scheme based on real-time simulation of wave propagation is designed. Data assimilation technique is incorporated to predict the distribution of seismic wave energy precisely. Radiative transfer theory and Monte Carlo simulation are used for modeling wave propagation in 2-D space, and the peak ground motion is calculated as quickly as possible. Our method has potential to predict shakemap, making the potential disaster be predicted before the real disaster happens. 2008 Ms8.0 Wenchuan earthquake is studied as an example to show the validity of the proposed method. 展开更多
关键词 real-time numerical shake prediction· 2-Dspace model · Radiative transfer theory · Dataassimilation · Shakemap prediction
下载PDF
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:11
13
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) Gated recurrent unit(GRU)neural network
下载PDF
Real-Time Prediction Algorithm for Intelligent Edge Networks with Federated Learning-Based Modeling
14
作者 Seungwoo Kang Seyha Ros +3 位作者 Inseok Song Prohim Tam Sa Math Seokhoon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第11期1967-1983,共17页
Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requi... Intelligent healthcare networks represent a significant component in digital applications,where the requirements hold within quality-of-service(QoS)reliability and safeguarding privacy.This paper addresses these requirements through the integration of enabler paradigms,including federated learning(FL),cloud/edge computing,softwaredefined/virtualized networking infrastructure,and converged prediction algorithms.The study focuses on achieving reliability and efficiency in real-time prediction models,which depend on the interaction flows and network topology.In response to these challenges,we introduce a modified version of federated logistic regression(FLR)that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks.To establish the FLR framework for mission-critical healthcare applications,we provide a comprehensive workflow in this paper,introducing framework setup,iterative round communications,and model evaluation/deployment.Our optimization process delves into the formulation of loss functions and gradients within the domain of federated optimization,which concludes with the generation of service experience batches for model deployment.To assess the practicality of our approach,we conducted experiments using a hypertension prediction model with data sourced from the 2019 annual dataset(Version 2.0.1)of the Korea Medical Panel Survey.Performance metrics,including end-to-end execution delays,model drop/delivery ratios,and final model accuracies,are captured and compared between the proposed FLR framework and other baseline schemes.Our study offers an FLR framework setup for the enhancement of real-time prediction modeling within intelligent healthcare networks,addressing the critical demands of QoS reliability and privacy preservation. 展开更多
关键词 Edge computing federated logistic regression intelligent healthcare networks prediction modeling privacy-aware and real-time learning
下载PDF
Efficient Harmonic Analysis Technique for Prediction of IGS Real-Time Satellite Clock Corrections
15
作者 Mohamed Elsayed Elsobeiey 《Positioning》 2017年第3期37-45,共9页
Real-time satellite orbit and clock corrections obtained from the broadcast ephemerides can be improved using IGS real-time service (RTS) products. Recent research showed that applying such corrections for broadcast e... Real-time satellite orbit and clock corrections obtained from the broadcast ephemerides can be improved using IGS real-time service (RTS) products. Recent research showed that applying such corrections for broadcast ephemerides can significantly improve the RMS of the estimated coordinates. However, unintentional streaming interruption may happen for many reasons such as software or hardware failure. Streaming interruption, if happened, will cause sudden degradation of the obtained solution if only the broadcast ephemerides are used. A better solution can be obtained in real-time if the predicted part of the ultra-rapid products is used. In this paper, Harmonic analysis technique is used to predict the IGS RTS corrections using historical broadcasted data. It is shown that using the predicted clock corrections improves the RMS of the estimated coordinates by about 72%, 58%, and 72% in latitude, longitude, and height directions, respectively and reduces the 2D and 3D errors by about 80% compared with the predicted part of the IGS ultra-rapid clock corrections. 展开更多
关键词 real-time Service CLOCK prediction PRECISE Point Positioning
下载PDF
Novel Real-Time System for Traffic Flow Classification and Prediction
16
作者 YE Dezhong LV Haibing +2 位作者 GAO Yun BAO Qiuxia CHEN Mingzi 《ZTE Communications》 2019年第2期10-18,共9页
Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, ho... Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, how to design a system for real-time traffic flow prediction and receive high accuracy of prediction are urgent problems for both researchers and equipment suppliers. This paper presents a novel real-time system for traffic flow prediction. Different from the single algorithm for traffic flow prediction, our novel system firstly utilizes dynamic time wrapping to judge whether traffic flow data has regularity,realizing traffic flow data classification. After traffic flow data classification, we respectively make use of XGBoost and wavelet transform-echo state network to predict traffic flow data according to their regularity. Moreover, in order to realize real-time classification and prediction, we apply Spark/Hadoop computing platform to process large amounts of traffic data. Numerical results show that the proposed novel system has better performance and higher accuracy than other schemes. 展开更多
关键词 TRAFFIC flow prediction dynamic time WARPING XGBoost ECHO state network Spark/Hadoop computing platform
下载PDF
A Deep Real-Time Fire Prediction Parallel D-CNN Model on UDOO BOLT V8
17
作者 Amal H.Alharbi Hanan A.Hosni Mahmoud 《Computers, Materials & Continua》 SCIE EI 2022年第12期6237-6252,共16页
Hazardous incidences have significant influences on human life,and fire is one of the foremost causes of such hazard in most nations.Fire prediction and classification model from a set of fire images can decrease the ... Hazardous incidences have significant influences on human life,and fire is one of the foremost causes of such hazard in most nations.Fire prediction and classification model from a set of fire images can decrease the risk of losing human lives and assets.Timely promotion of fire emergency can be of great aid.Therefore,construction of these prediction models is relevant and critical.This article proposes an operative fire prediction model that depends on a prediction unit embedded in the processor UDOO BOLT V8 hardware to predict fires in real time.A fire image database is improved to enhance the images quality prior to classify them as either fire or nonfire.Our proposed deep learning-based Very Deep Convolutional Networks Visual Geometry Group(VGG-16)model(Parallel VGG-16)is an enhanced version of the VGG-16 model,by incorporating parallel convolution layers and a fusion module for better accuracy.The experimental results validate the performance of the Parallel VGG-16 which achieves an accuracy of 97%,compared to the compared state-of-the-art models.Moreover,we integrate the prediction module into a UDOO BOLT V8 computer,which precisely controlled the fire alarm so that it can cautious people from fire in real time.In this paper we propose a complete fire prediction model using a camera and the UDOO BOLT V8 embedded system.Our experiments validate the effectiveness and applicability of the proposed fire model. 展开更多
关键词 Fire prediction UDOO BOLT V8 deep learning
下载PDF
Real-time prediction of earthquake potential damage:A case study for the January 8,2022 M_(S) 6.9 Menyuan earthquake in Qinghai,China
18
作者 Jindong Song Jingbao Zhu +2 位作者 Yongxiang Wei Shuilong Li Shanyou Li 《Earthquake Research Advances》 CSCD 2023年第1期52-60,共9页
It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage pre... It is critical to determine whether a site has potential damage in real-time after an earthquake occurs,which is a challenge in earthquake disaster reduction.Here,we propose a real-time Earthquake Potential Damage predictor(EPDor)based on predicting peak ground velocities(PGVs)of sites.The EPDor is composed of three parts:(1)predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models;(2)predicting the PGVs at distant sites based on the empirical ground motion prediction equation;(3)generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in(1)and(2).We apply the EPDor to the 2022 M_(S) 6.9 Menyuan earthquake in Qinghai Province,China to predict its potential damage.Within the initial few seconds after the first station is triggered,the EPDor can determine directly whether there is potential damage for some sites to a certain degree.Hence,we infer that the EPDor has potential application for future earthquakes.Meanwhile,it also has potential in Chinese earthquake early warning system. 展开更多
关键词 Earthquake early warning Potential damage Machine learning 2022 M_(S)6.9 Menyuan earthquake Magnitude estimation On-site peak ground velocity prediction
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach 被引量:2
19
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
20
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部