In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e...In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of...Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of absolute and relative temporal consistency. In real-time database systems, it is often the case that the policies of transaction schedules only consider the deadline of real-time transactions, making it insufficient to ensure temporal correctness of transactions. A policy is given by considering both the deadlines of transactions and the “data deadline” to schedule real-time transactions. A real-time relational data model and a real-time relational algebra based on the characteristics of temporal data are also proposed. In this model, the temporal data has not only corresponding values, but also validity intervals corresponding to the data values. At the same time, this model is able to keep historical data values. When validity interval of a relation is [NOW, NOW], real-time relational algebra will transform to traditional relational algebra.展开更多
In this paper, the authors present the development of a data modelling tool that visualizes the transformation process of an "Entity-Relationship" Diagram (ERD) into a relational database schema. The authors' foc...In this paper, the authors present the development of a data modelling tool that visualizes the transformation process of an "Entity-Relationship" Diagram (ERD) into a relational database schema. The authors' focus is the design of a tool for educational purposes and its implementation on e-learning database course. The tool presents two stages of database design. The first stage is to draw ERD graphically and validate it. The drawing is done by a learner. Then at second stage, the system enables automatically transformation of ERD to relational database schema by using common rules. Thus, the learner could understand more easily how to apply the theoretical material. A detailed description of system functionalities and algorithm for the conversion are proposed. Finally, a user interface and usage aspects are exposed.展开更多
We developed a parallel object relational DBMS named PORLES. It uses BSP model as its parallel computing model, and monoid calculus as its basis of data model. In this paper, we introduce its data model, parallel que...We developed a parallel object relational DBMS named PORLES. It uses BSP model as its parallel computing model, and monoid calculus as its basis of data model. In this paper, we introduce its data model, parallel query optimization, transaction processing system and parallel access method in detail.展开更多
As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which co...As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which combine compress technology in existence in order to settle datum redundancy in the course of temporal datum storage and temporal datum of slow acting domain and momentary acting domain are accessed by using each from independence clock method and mutual clock method .We also bring forward strategy of gridding storage to resolve the problems of temporal datum rising rapidly.展开更多
Data envelopment analysis(DEA) model is widely used to evaluate the relative efficiency of producers. It is a kind of objective decision method with multiple indexes. However, the two basic models frequently used at p...Data envelopment analysis(DEA) model is widely used to evaluate the relative efficiency of producers. It is a kind of objective decision method with multiple indexes. However, the two basic models frequently used at present, the C2R model and the C2GS2 model have limitations when used alone,resulting in evaluations that are often unsatisfactory. In order to solve this problem, a mixed DEA model is built and is used to evaluate the validity of the business efficiency of listed companies. An explanation of how to use this mixed DEA model is offered and its feasibility is verified.展开更多
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of sour...In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.展开更多
In order to set up a conceptual data model that reflects the real world as accurately as possible,this paper firstly reviews and analyzes the disadvantages of previous conceptual data models used by traditional GIS in...In order to set up a conceptual data model that reflects the real world as accurately as possible,this paper firstly reviews and analyzes the disadvantages of previous conceptual data models used by traditional GIS in simulating geographic space,gives a new explanation to geographic space and analyzes its various essential characteristics.Finally,this paper proposes several detailed key points for designing a new type of GIS data model and gives a simple holistic GIS data model.展开更多
This paper concentrates on the problem of data redundancy under the extended-possibility-based model. Based on the information gain in data classification, a measure - relation redundancy - is proposed to evaluate the...This paper concentrates on the problem of data redundancy under the extended-possibility-based model. Based on the information gain in data classification, a measure - relation redundancy - is proposed to evaluate the degree of a given relation being redundant in whole. The properties of relation redundancy are also investigated. This new measure is useful in dealing with data redundancy.展开更多
Data model is the core knowledge of database course.A deep understanding of data model is the key to mastering database design and application.The data models of NoSQL databases are categorized as key-value stores,col...Data model is the core knowledge of database course.A deep understanding of data model is the key to mastering database design and application.The data models of NoSQL databases are categorized as key-value stores,column-oriented stores,document-oriented stores and graph databases.This paper makes a comparative analysis of the characteristics of the relational data model and NoSQL data models,and gives the design and implementation of different data models combined with cases,so that students can master the relevant theories and application methods of the database model.展开更多
MatBase is a prototype data and knowledge base management expert intelligent system based on the Relational,Entity-Relationship,and(Elementary)Mathematical Data Models.Dyadic relationships are quite common in data mod...MatBase is a prototype data and knowledge base management expert intelligent system based on the Relational,Entity-Relationship,and(Elementary)Mathematical Data Models.Dyadic relationships are quite common in data modeling.Besides their relational-type constraints,they often exhibit mathematical properties that are not covered by the Relational Data Model.This paper presents and discusses the MatBase algorithm that assists database designers in discovering all non-relational constraints associated to them,as well as its algorithm for enforcing them,thus providing a significantly higher degree of data quality.展开更多
Air-side economizers are increasingly used to take advantage of“free-cooling”in data centers with the intent of reducing the carbon footprint of buildings.However,they can introduce outdoor pollutants to indoor envi...Air-side economizers are increasingly used to take advantage of“free-cooling”in data centers with the intent of reducing the carbon footprint of buildings.However,they can introduce outdoor pollutants to indoor environment of data centers and cause corrosion damage to the information technology equipment.To evaluate the reliability of information technology equipment under various thermal and air-pollution conditions,a mechanistic model based on multi-ion transport and chemical reactions was developed.The model was used to predict Cu corrosion caused by Cl_(2)-containing pollutant mixtures.It also accounted for the effects of temperature(25℃and 28℃),relative humidity(50%,75%,and 95%),and synergism.It also identified higher air temperature as a corrosion barrier and higher relative humidity as a corrosion accelerator,which agreed well with the experimental results.The average root mean square error of the prediction was 13.7Å.The model can be used to evaluate the thermal guideline for data centers design and operation when Cl_(2)is present based on pre-established acceptable risk of corrosion in data centers’environment.展开更多
基金Science and Technology Innovation 2030-Major Project of“New Generation Artificial Intelligence”granted by Ministry of Science and Technology,Grant Number 2020AAA0109300.
文摘In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.
文摘In this paper,the entity_relation data model for integrating spatio_temporal data is designed.In the design,spatio_temporal data can be effectively stored and spatiao_temporal analysis can be easily realized.
基金Project 60073045 supported by National Natural Science Foundation of China
文摘Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of absolute and relative temporal consistency. In real-time database systems, it is often the case that the policies of transaction schedules only consider the deadline of real-time transactions, making it insufficient to ensure temporal correctness of transactions. A policy is given by considering both the deadlines of transactions and the “data deadline” to schedule real-time transactions. A real-time relational data model and a real-time relational algebra based on the characteristics of temporal data are also proposed. In this model, the temporal data has not only corresponding values, but also validity intervals corresponding to the data values. At the same time, this model is able to keep historical data values. When validity interval of a relation is [NOW, NOW], real-time relational algebra will transform to traditional relational algebra.
文摘In this paper, the authors present the development of a data modelling tool that visualizes the transformation process of an "Entity-Relationship" Diagram (ERD) into a relational database schema. The authors' focus is the design of a tool for educational purposes and its implementation on e-learning database course. The tool presents two stages of database design. The first stage is to draw ERD graphically and validate it. The drawing is done by a learner. Then at second stage, the system enables automatically transformation of ERD to relational database schema by using common rules. Thus, the learner could understand more easily how to apply the theoretical material. A detailed description of system functionalities and algorithm for the conversion are proposed. Finally, a user interface and usage aspects are exposed.
文摘We developed a parallel object relational DBMS named PORLES. It uses BSP model as its parallel computing model, and monoid calculus as its basis of data model. In this paper, we introduce its data model, parallel query optimization, transaction processing system and parallel access method in detail.
文摘As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which combine compress technology in existence in order to settle datum redundancy in the course of temporal datum storage and temporal datum of slow acting domain and momentary acting domain are accessed by using each from independence clock method and mutual clock method .We also bring forward strategy of gridding storage to resolve the problems of temporal datum rising rapidly.
基金Supported by Commission of Science Technology and Industry for National Defense(No, C192005C001)
文摘Data envelopment analysis(DEA) model is widely used to evaluate the relative efficiency of producers. It is a kind of objective decision method with multiple indexes. However, the two basic models frequently used at present, the C2R model and the C2GS2 model have limitations when used alone,resulting in evaluations that are often unsatisfactory. In order to solve this problem, a mixed DEA model is built and is used to evaluate the validity of the business efficiency of listed companies. An explanation of how to use this mixed DEA model is offered and its feasibility is verified.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(grant No.2014BAK03B02)Science for Earthquake Resilience(grant Nos XH16021 and XH16022Y)
文摘In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake pre- diction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.
文摘In order to set up a conceptual data model that reflects the real world as accurately as possible,this paper firstly reviews and analyzes the disadvantages of previous conceptual data models used by traditional GIS in simulating geographic space,gives a new explanation to geographic space and analyzes its various essential characteristics.Finally,this paper proposes several detailed key points for designing a new type of GIS data model and gives a simple holistic GIS data model.
基金Supported by the National Natural Science Foundation of China(No.70231010/70321001)the Bilateral Scientific and Technological Cooperation between China and Flanders (No.174B0201)
文摘This paper concentrates on the problem of data redundancy under the extended-possibility-based model. Based on the information gain in data classification, a measure - relation redundancy - is proposed to evaluate the degree of a given relation being redundant in whole. The properties of relation redundancy are also investigated. This new measure is useful in dealing with data redundancy.
基金This work was partly supported through the collaborative education projects of production and learning,and 2019 Sichuan teaching reform and research project,and teaching reform and research project of University of Electronic Science and technology in 2019.
文摘Data model is the core knowledge of database course.A deep understanding of data model is the key to mastering database design and application.The data models of NoSQL databases are categorized as key-value stores,column-oriented stores,document-oriented stores and graph databases.This paper makes a comparative analysis of the characteristics of the relational data model and NoSQL data models,and gives the design and implementation of different data models combined with cases,so that students can master the relevant theories and application methods of the database model.
文摘MatBase is a prototype data and knowledge base management expert intelligent system based on the Relational,Entity-Relationship,and(Elementary)Mathematical Data Models.Dyadic relationships are quite common in data modeling.Besides their relational-type constraints,they often exhibit mathematical properties that are not covered by the Relational Data Model.This paper presents and discusses the MatBase algorithm that assists database designers in discovering all non-relational constraints associated to them,as well as its algorithm for enforcing them,thus providing a significantly higher degree of data quality.
基金This work was supported by American Society of Heating,Refrigerating and Air-conditioning Engineers and Syracuse University.The authors appreciate the writing support from the US Department of Energy’s Oak Ridge National Laboratory.
文摘Air-side economizers are increasingly used to take advantage of“free-cooling”in data centers with the intent of reducing the carbon footprint of buildings.However,they can introduce outdoor pollutants to indoor environment of data centers and cause corrosion damage to the information technology equipment.To evaluate the reliability of information technology equipment under various thermal and air-pollution conditions,a mechanistic model based on multi-ion transport and chemical reactions was developed.The model was used to predict Cu corrosion caused by Cl_(2)-containing pollutant mixtures.It also accounted for the effects of temperature(25℃and 28℃),relative humidity(50%,75%,and 95%),and synergism.It also identified higher air temperature as a corrosion barrier and higher relative humidity as a corrosion accelerator,which agreed well with the experimental results.The average root mean square error of the prediction was 13.7Å.The model can be used to evaluate the thermal guideline for data centers design and operation when Cl_(2)is present based on pre-established acceptable risk of corrosion in data centers’environment.