Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi...Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.展开更多
Background Recent advances in serial femtosecond crystallography(SFX)using X-ray free electron lasers(XFELs)have facilitated accurate structure determination for biological macromolecules.However,given the many fluctu...Background Recent advances in serial femtosecond crystallography(SFX)using X-ray free electron lasers(XFELs)have facilitated accurate structure determination for biological macromolecules.However,given the many fluctuations inherent in SFX,the acquisition of SFX data of sufficiently high quality still remains challenging.Method Aimed at enhancing the accuracy of SFX data,this study proposes an iterative refinement method to optimally match pairs of the observed and predicted reflections on the detector plane.This method features a combination of detector geometry optimization and diffraction model refinement in an alternate manner,concomitant with a cycle-by-cycle peak selection procedure.Result To demonstrate whether this iterative method is convergent and feasible,both numerical simulations and experimental tests have been performed.The results reveal that this method can gradually improve overall quality of the integrated SFX data and therefore accelerate the convergence of Monte Carlo integration,while simultaneously suppressing correlations inherent in certain parameters and precluding outliers to some extent during the refinement.Conclusion We have demonstrated that our iterative refinement method is applicable to both simulated and experimental SFX data.It is expected that this method could provide meaningful insights into the refinement of SFX data and take the step forward toward more accurate Monte Carlo integration.展开更多
文摘Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.
基金This work was financially supported by the grants from the Strategic Priority Research Program of CAS(XDB08030103)the National Natural Science Foundation of China(31570744,31670059).
文摘Background Recent advances in serial femtosecond crystallography(SFX)using X-ray free electron lasers(XFELs)have facilitated accurate structure determination for biological macromolecules.However,given the many fluctuations inherent in SFX,the acquisition of SFX data of sufficiently high quality still remains challenging.Method Aimed at enhancing the accuracy of SFX data,this study proposes an iterative refinement method to optimally match pairs of the observed and predicted reflections on the detector plane.This method features a combination of detector geometry optimization and diffraction model refinement in an alternate manner,concomitant with a cycle-by-cycle peak selection procedure.Result To demonstrate whether this iterative method is convergent and feasible,both numerical simulations and experimental tests have been performed.The results reveal that this method can gradually improve overall quality of the integrated SFX data and therefore accelerate the convergence of Monte Carlo integration,while simultaneously suppressing correlations inherent in certain parameters and precluding outliers to some extent during the refinement.Conclusion We have demonstrated that our iterative refinement method is applicable to both simulated and experimental SFX data.It is expected that this method could provide meaningful insights into the refinement of SFX data and take the step forward toward more accurate Monte Carlo integration.