Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d...Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.展开更多
Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution...Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution.The CA have recently gained recognition as a robust cryptographic primitive,being used as pseudorandom number generators in hash functions,block ciphers and stream ciphers.CA have the ability to perform parallel transformations,resulting in high throughput performance.Additionally,they exhibit a natural tendency to resist fault attacks.Few stream cipher schemes based on CA have been proposed in the literature.Though,their encryption/decryption throughput is relatively low,which makes them unsuitable formultimedia communication.Trivium and Grain are efficient stream ciphers that were selected as finalists in the eSTREAM project,but they have proven to be vulnerable to differential fault attacks.This work introduces a novel and scalable stream cipher named CeTrivium,whose design is based on CA.CeTrivium is a 5-neighborhood CA-based streamcipher inspired by the designs of Trivium and Grain.It is constructed using three building blocks:the Trivium(Tr)block,the Nonlinear-CA(NCA)block,and the Nonlinear Mixing(NM)block.The NCA block is a 64-bit nonlinear hybrid 5-neighborhood CA,while the Tr block has the same structure as the Trivium stream cipher.The NM block is a nonlinear,balanced,and reversible Boolean function that mixes the outputs of the Tr and NCA blocks to produce a keystream.Cryptanalysis of CeTrivium has indicated that it can resist various attacks,including correlation,algebraic,fault,cube,Meier and Staffelbach,and side channel attacks.Moreover,the scheme is evaluated using histogramand spectrogramanalysis,aswell as several differentmeasurements,including the correlation coefficient,number of samples change rate,signal-to-noise ratio,entropy,and peak signal-to-noise ratio.The performance of CeTrivium is evaluated and compared with other state-of-the-art techniques.CeTrivium outperforms them in terms of encryption throughput while maintaining high security.CeTrivium has high encryption and decryption speeds,is scalable,and resists various attacks,making it suitable for multimedia communication.展开更多
In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of ...In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design.展开更多
With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network str...With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network.展开更多
In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned...In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience(QoE)and performance objectives.Most researchers focused on Forward Error Correction(FEC)techniques when attempting to strike a balance between QoE and performance.However,as network capacity increases,the performance degrades,impacting the live visual experience.Recently,Deep Learning(DL)algorithms have been successfully integrated with FEC to stream videos across multiple heterogeneous networks.But these algorithms need to be changed to make the experience better without sacrificing packet loss and delay time.To address the previous challenge,this paper proposes a novel intelligent algorithm that streams video in multi-home heterogeneous networks based on network-centric characteristics.The proposed framework contains modules such as Intelligent Content Extraction Module(ICEM),Channel Status Monitor(CSM),and Adaptive FEC(AFEC).This framework adopts the Cognitive Learning-based Scheduling(CLS)Module,which works on the deep Reinforced Gated Recurrent Networks(RGRN)principle and embeds them along with the FEC to achieve better performances.The complete framework was developed using the Objective Modular Network Testbed in C++(OMNET++),Internet networking(INET),and Python 3.10,with Keras as the front end and Tensorflow 2.10 as the back end.With extensive experimentation,the proposed model outperforms the other existing intelligentmodels in terms of improving the QoE,minimizing the End-to-End Delay(EED),and maintaining the highest accuracy(98%)and a lower Root Mean Square Error(RMSE)value of 0.001.展开更多
This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition...This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.展开更多
Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed ...Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.展开更多
A study of the accessibility of a city’s scenic spots via different travel modes can contribute to optimization of tourism-related transportation while improving tourists’ travel-related satisfaction levels and adva...A study of the accessibility of a city’s scenic spots via different travel modes can contribute to optimization of tourism-related transportation while improving tourists’ travel-related satisfaction levels and advancing tourism. We systematically analyzed the accessibility of 56 scenic spots in Xi’an City, China, via car and public transport travel modes using the real-time travel function of the Baidu Maps API(Application Programming Interface) along with spatial analysis methods and the modal accessibility gap index of scenic spots. We obtained the following results. First, maximum and minimum travel times using public transport exceeded those using cars. Moreover, the accessibility of scenic spots via cars and public transport presented a circular spatial pattern of increasing travel time from the center to the periphery. Contrasting with travel by public transport, car travel showed a clear time-space compression effect. Second, accessibility of the scenic spots via cars and public transport showed some spatial heterogeneity, with no clear advantages of car accessibility in the central urban area. However, advantages of car accessibility were increasingly evident moving from the center to the periphery. Third, whereas the correlation of the modal accessibility gap index of scenic spots in Xi’an with global space was significantly positive, local spatial interdependence was only evident in some inner city areas and in marginal areas. Moreover, spatial heterogeneity was evident in two regions but was insignificant in other areas, indicating that the spatial interdependence of the modal accessibility gap index in most scenic spots was not apparent in terms of the overall effect of public transport routes, road networks, and the distribution of scenic spots. The improvement of public transport coverage in marginal areas and the optimization of public transport routes in central urban areas are essential tasks for improving travel using public transport in the future.展开更多
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre...This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.展开更多
With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method...With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.展开更多
Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW)...Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW) platform, adopting compression technologies of H.264 and QCP, a set of streaming media players are designed and implemented, and the principle, structure, key technologies and performance analysis of this system are introduced. This player works well in practice.展开更多
360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to...360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to provide stable streaming service in general network environment because the size of data to send is larger than that of conventional video. Also, the real user's viewing area is very small compared to the sending amount. In this paper, we propose a system that can provide high quality 360 video streaming services to the users more efficiently in the cloud. In particular, we propose a streaming system focused on using a head mount display (HMD).展开更多
In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to i...In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.展开更多
In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may...In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may decay due to outside temperature changes. The time required to transport over the distance may vary a lot as well. As a result, the likelihood of the goods deteriorating is very high. There is a need for a study on cargo bay to prevent this and to protect the medical goods. In this paper, in order to protect the temperature sensitive medical goods, the inside cargo bay is equipped with the cooling fan device and the electric heating elements. These elements can be monitored and controlled according to the user’s discretion. By using the web server built inside the cloud server, the temperature can be controlled in real-time from anywhere without the limitation of distance. We built the proposed device, and installed it on the drone cargo bay. The test results show that the cargo bay can be temperature-controlled, and the setting can be maintained over a great distance. The user can watch the temperature variations during the transport and ascertain the goodness of the medical supply with the data. It is expected that such development can greatly enhance the utility of the drone operations, especially for the medical supply transport applications.展开更多
Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load tran...Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load transport rate by adopting the sedimentation pit method and resolving such key problems as weighing and desilting, which can achieve long-time, all-weather and real-time telemeasurement of the bed load transport rate of plain rivers, estuaries and coasts. Both laboratory and field tests show that this monitor is reasonable in design, stable in properties and convenient in measurement, and it can be used to monitor the bed load transport rate in practical projects.展开更多
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac...The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.展开更多
The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for s...The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-applied stresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers are applied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numerically. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of the flow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i.e., opposite to wave propagation) for a certain range of yield stress.展开更多
文摘Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.
文摘Due to their significant correlation and redundancy,conventional block cipher cryptosystems are not efficient in encryptingmultimedia data.Streamciphers based onCellularAutomata(CA)can provide amore effective solution.The CA have recently gained recognition as a robust cryptographic primitive,being used as pseudorandom number generators in hash functions,block ciphers and stream ciphers.CA have the ability to perform parallel transformations,resulting in high throughput performance.Additionally,they exhibit a natural tendency to resist fault attacks.Few stream cipher schemes based on CA have been proposed in the literature.Though,their encryption/decryption throughput is relatively low,which makes them unsuitable formultimedia communication.Trivium and Grain are efficient stream ciphers that were selected as finalists in the eSTREAM project,but they have proven to be vulnerable to differential fault attacks.This work introduces a novel and scalable stream cipher named CeTrivium,whose design is based on CA.CeTrivium is a 5-neighborhood CA-based streamcipher inspired by the designs of Trivium and Grain.It is constructed using three building blocks:the Trivium(Tr)block,the Nonlinear-CA(NCA)block,and the Nonlinear Mixing(NM)block.The NCA block is a 64-bit nonlinear hybrid 5-neighborhood CA,while the Tr block has the same structure as the Trivium stream cipher.The NM block is a nonlinear,balanced,and reversible Boolean function that mixes the outputs of the Tr and NCA blocks to produce a keystream.Cryptanalysis of CeTrivium has indicated that it can resist various attacks,including correlation,algebraic,fault,cube,Meier and Staffelbach,and side channel attacks.Moreover,the scheme is evaluated using histogramand spectrogramanalysis,aswell as several differentmeasurements,including the correlation coefficient,number of samples change rate,signal-to-noise ratio,entropy,and peak signal-to-noise ratio.The performance of CeTrivium is evaluated and compared with other state-of-the-art techniques.CeTrivium outperforms them in terms of encryption throughput while maintaining high security.CeTrivium has high encryption and decryption speeds,is scalable,and resists various attacks,making it suitable for multimedia communication.
基金supported by the Research Fund of National Key Laboratory of Computer Architecture under Grant No.CARCH201501the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No.2016A09
文摘In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design.
基金National High-Tech Research and Development Program of China (863 Program) (No.2007AA01Z309)
文摘With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network.
文摘In recent years,real-time video streaming has grown in popularity.The growing popularity of the Internet of Things(IoT)and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience(QoE)and performance objectives.Most researchers focused on Forward Error Correction(FEC)techniques when attempting to strike a balance between QoE and performance.However,as network capacity increases,the performance degrades,impacting the live visual experience.Recently,Deep Learning(DL)algorithms have been successfully integrated with FEC to stream videos across multiple heterogeneous networks.But these algorithms need to be changed to make the experience better without sacrificing packet loss and delay time.To address the previous challenge,this paper proposes a novel intelligent algorithm that streams video in multi-home heterogeneous networks based on network-centric characteristics.The proposed framework contains modules such as Intelligent Content Extraction Module(ICEM),Channel Status Monitor(CSM),and Adaptive FEC(AFEC).This framework adopts the Cognitive Learning-based Scheduling(CLS)Module,which works on the deep Reinforced Gated Recurrent Networks(RGRN)principle and embeds them along with the FEC to achieve better performances.The complete framework was developed using the Objective Modular Network Testbed in C++(OMNET++),Internet networking(INET),and Python 3.10,with Keras as the front end and Tensorflow 2.10 as the back end.With extensive experimentation,the proposed model outperforms the other existing intelligentmodels in terms of improving the QoE,minimizing the End-to-End Delay(EED),and maintaining the highest accuracy(98%)and a lower Root Mean Square Error(RMSE)value of 0.001.
基金The National Natural Science Foundation of China (91438203,91638301,91438111,41601476).
文摘This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.
基金supported by National Key Technology Research and Development Program of China under Grant No.2015BAH08F01the joint fund of the Ministry of Education of People's Republic of China and China Mobile Communications Corporation under Grant No.MCM20160304
文摘Multi-channel can be used to provide higher transmission ability to the bandwidth-intensive and delay-sensitive real-time streams. However, traditional channel capacity theories and coding schemes are seldom designed for the real-time streams with strict delay constraint, especially in multi-channel context. This paper considers a real-time stream system, where real-time messages with different importance should be transmitted through several packet erasure channels, and be decoded by the receiver within a fixed delay. Based on window erasure channels and i.i.d.(identically and independently distributed) erasure channels, we derive the Multi-channel Real-time Stream Transmission(MRST) capacity models for Symmetric Real-time(SR) streams and Asymmetric Real-time(AR) streams respectively. Moreover, for window erasures, a Maximum Equilibrium Intra-session Code(MEIC) is presented for SR and AR streams, and is shown able to asymptotically achieve the theoretical MRST capacity. For i.i.d. erasures, we propose an Adaptive Maximum Equilibrium Intra-session Code(AMEIC), and then prove AMEIC can closely approach the MRST transmission capacity. Finally, the performances of the proposed codes are verified by simulations.
基金Under the auspices of National Natural Science Foundation of China(No.41831284,41501120)Special Scientific Research Project of Education Department of Shaanxi Provincial Government(No.18JK0649)Scientific Research Project of Xi’an International Studies University(No.18XWC24)
文摘A study of the accessibility of a city’s scenic spots via different travel modes can contribute to optimization of tourism-related transportation while improving tourists’ travel-related satisfaction levels and advancing tourism. We systematically analyzed the accessibility of 56 scenic spots in Xi’an City, China, via car and public transport travel modes using the real-time travel function of the Baidu Maps API(Application Programming Interface) along with spatial analysis methods and the modal accessibility gap index of scenic spots. We obtained the following results. First, maximum and minimum travel times using public transport exceeded those using cars. Moreover, the accessibility of scenic spots via cars and public transport presented a circular spatial pattern of increasing travel time from the center to the periphery. Contrasting with travel by public transport, car travel showed a clear time-space compression effect. Second, accessibility of the scenic spots via cars and public transport showed some spatial heterogeneity, with no clear advantages of car accessibility in the central urban area. However, advantages of car accessibility were increasingly evident moving from the center to the periphery. Third, whereas the correlation of the modal accessibility gap index of scenic spots in Xi’an with global space was significantly positive, local spatial interdependence was only evident in some inner city areas and in marginal areas. Moreover, spatial heterogeneity was evident in two regions but was insignificant in other areas, indicating that the spatial interdependence of the modal accessibility gap index in most scenic spots was not apparent in terms of the overall effect of public transport routes, road networks, and the distribution of scenic spots. The improvement of public transport coverage in marginal areas and the optimization of public transport routes in central urban areas are essential tasks for improving travel using public transport in the future.
文摘This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.
基金supported by the National Nature Science Foundation of China(NSFC 60622110,61471220,91538107,91638205)National Basic Research Project of China(973,2013CB329006),GY22016058
文摘With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.
文摘Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMAlx wireless data network and Binary Runtime Environment for Wireless (BREW) platform, adopting compression technologies of H.264 and QCP, a set of streaming media players are designed and implemented, and the principle, structure, key technologies and performance analysis of this system are introduced. This player works well in practice.
文摘360 video streaming services over the network are becoming popular. In particular, it is easy to experience 360 video through the already popular smartphone. However, due to the nature of 360 video, it is difficult to provide stable streaming service in general network environment because the size of data to send is larger than that of conventional video. Also, the real user's viewing area is very small compared to the sending amount. In this paper, we propose a system that can provide high quality 360 video streaming services to the users more efficiently in the cloud. In particular, we propose a streaming system focused on using a head mount display (HMD).
文摘In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.
文摘In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may decay due to outside temperature changes. The time required to transport over the distance may vary a lot as well. As a result, the likelihood of the goods deteriorating is very high. There is a need for a study on cargo bay to prevent this and to protect the medical goods. In this paper, in order to protect the temperature sensitive medical goods, the inside cargo bay is equipped with the cooling fan device and the electric heating elements. These elements can be monitored and controlled according to the user’s discretion. By using the web server built inside the cloud server, the temperature can be controlled in real-time from anywhere without the limitation of distance. We built the proposed device, and installed it on the drone cargo bay. The test results show that the cargo bay can be temperature-controlled, and the setting can be maintained over a great distance. The user can watch the temperature variations during the transport and ascertain the goodness of the medical supply with the data. It is expected that such development can greatly enhance the utility of the drone operations, especially for the medical supply transport applications.
基金supported by the special program to enhance the navigation capacity of the Golden Waterway funded by the Ministry of Transport of the People’s Republic of China"Research on Key Techniques to Monitor and Simulate the River Flow and Sediment Transport"(Grant No.2011-328-746-40)
文摘Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load transport rate by adopting the sedimentation pit method and resolving such key problems as weighing and desilting, which can achieve long-time, all-weather and real-time telemeasurement of the bed load transport rate of plain rivers, estuaries and coasts. Both laboratory and field tests show that this monitor is reasonable in design, stable in properties and convenient in measurement, and it can be used to monitor the bed load transport rate in practical projects.
基金This research work has been conducted in cooperation with members of DETSI project supported by BPI France and Pays de Loire and Auvergne Rhone Alpes.
文摘The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.
基金The work was supported by CRCG Research Grant 10203302 awarded by the University of Hong Kong,and Grants HKU 7117/99E and HKU 7081/02E awarded by the Research Grants Council of the Hong Kong Special Administrative Region
文摘The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-applied stresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers are applied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numerically. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of the flow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i.e., opposite to wave propagation) for a certain range of yield stress.