In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
Road transport safety policies have emphasized road infrastructure safety design and engineering as a core function.However,in developing countries like Vietnam,this approach has been slower to adopt,resulting in subs...Road transport safety policies have emphasized road infrastructure safety design and engineering as a core function.However,in developing countries like Vietnam,this approach has been slower to adopt,resulting in substandard roads.In-depth studies of accident locations indicate that road environment factors contribute significantly to road accidents in Vietnam and road design features are associated with specific accident types and hazards.Proactive and reactive approaches,such as road safety audit,inspection,assessment,and treatment of hazardous locations,are necessary to ensure that the road and its environment are safe.This paper provides an overview of road safety in Vietnam in general,and Ho Chi Minh in particular,including its factors and characteristics,as well as road infrastructure safety improvements.The iRap tool for road safety inspection and assessment is highlighted as a potential method for systematically analyzing road infrastructure deficiencies and providing targeted countermeasures to improve road safety under mixed traffic conditions.展开更多
Strategic maintenance plays a key role in ensuring high availability and utilization of the haul trucks,and as equipment began to grow more complex towards the end of the 20th century,there was a need for a proactive ...Strategic maintenance plays a key role in ensuring high availability and utilization of the haul trucks,and as equipment began to grow more complex towards the end of the 20th century,there was a need for a proactive maintenance strategy,which led to the development of condition-based maintenance.Realtime condition monitoring(RTCM)is the ability to perform condition monitoring in real-time and has the ability to alert maintenance and operations of abnormal conditions.These alarms can be used as an indication leading to a problem,and if a suitable corrective action is initiated in time,it could result in significant savings of equipment downtime and repair costs.This study aims to compare some maintenance performance indicators prior to and after implementation of RTCM strategy at a mine site using some tests of statistical significance.The study also indicated the presence of seasonality in the data,and thus the data was deseasonalized and detrended prior to being subjected to the statistical tests.Finally,the results indicated that RTCM strategy has proven to be successful in improving the availability for some of the failure categories chosen in this study.展开更多
A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector,especially non-detector locations.The space time model is better to integrate the spatial and temporal information ...A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector,especially non-detector locations.The space time model is better to integrate the spatial and temporal information comprehensibly.Firstly,the influencing factors of the "cause nodes" were studied,and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced.Finally,only the most relevant data were collected to compose the space time model.The experimental results with the actual data demonstrate that the model performs better than other three models.展开更多
The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage de...The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
In order to analyze and learn the difference in car-following behavior between normal and rainy days, we first collect car-following trajectory data of an urban elevated road on normal and rainy days by microwave rada...In order to analyze and learn the difference in car-following behavior between normal and rainy days, we first collect car-following trajectory data of an urban elevated road on normal and rainy days by microwave radar and analyze the differences in speed, relative speed, acceleration, space headway, and time headway among data through statistics. Secondly, owing to the time-series characteristics of car-following data, we use the long short-term memory(LSTM) neural network optimized by attention mechanism(AM) and sparrow search algorithm(SSA) to learn the different car-following behaviors under different weather conditions and build corresponding models(ASL-Normal, ASL-Rain, where ASL stands for AM-SSA-LSTM), respectively. Finally, the simulation test shows that the mean square error(MSE) and reciprocal of time-to-collision(RTTC) of the ASL model are better than those of LSTM and intelligent diver model(IDM), which is closer to the real data. The ASL model can better learn different driving behaviors on normal and rainy days. However,it has a higher sensitivity to weather conditions from cross test on normal and rainy data-sets which need classification training or sample diversification processing. In the car-following platoon simulation, the stability performances of two models are excellent, which can describe the basic characteristics of traffic flow on normal and rainy days. Comparing with ASL-Rain model, the convergence time of ASL-Normal is shorter, reflecting that cautious driving behavior on rainy days will reduce traffic efficiency to a certain extent. However, ASL-Normal model produces a more severe and frequent traffic oscillation within a shorter period because of aggressive driving behavior on normal days.展开更多
In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of ...In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of constant values to simulate traffic flow movement, estimate the average delay of the network and search for an optimal traffic signal timing plan. A case study was given to demonstrate that the proposed methodology can capture unique phenomena in oversaturated conditions such as forward wave, spillback and lane entrance blockage. The results show that CTM underestimates travel time by 25% when compared to Simtraffic, while the enhanced CTM underestimates by only 3%. A second case study shows that a dynamic signal timing plan is superior to a fixed signal timing plan in the term of average delay.展开更多
In this paper, we use the speed-gradient model proposed by Jiang et al. [Transp. Res. B 36 (2002) 405] to study the effect of boundary condition on shock and rarefaction wave. Our numerical results show that this mo...In this paper, we use the speed-gradient model proposed by Jiang et al. [Transp. Res. B 36 (2002) 405] to study the effect of boundary condition on shock and rarefaction wave. Our numerical results show that this model can reproduce the evolution of the two traffic waves, which further proves that this model can be used to perfectly explore the consequences caused by various boundary conditions.展开更多
Regarding the postulate of traffic infrastructure and vehicles, much attention should be given to the effect of road conditions on accidents. With large numbers of traffic accidents on Shenda Freeway, Liaoning Provinc...Regarding the postulate of traffic infrastructure and vehicles, much attention should be given to the effect of road conditions on accidents. With large numbers of traffic accidents on Shenda Freeway, Liaoning Province, Harbin City and others in P. R. China, parameters and the effect of accidents caused by horizontal alignment, vertical alignment, cross section and intersection are studied systematically The disciplinary analysis of these effects are presented in this paper. The viewpoint is acknowledged that high sub grade and steep slopes are against traffic safety, which is common and ignored in high-usage highways in China. Design parameters of the current design criteria and the corresponding countermeasures are suggested for safety on our highways.展开更多
this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of t...this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.展开更多
The paper promotes the implementation of a neural network approach to improve one of the most transcendent traffic conditions: the mobility of the cars in any particular junction. Neural networks have proven to be an ...The paper promotes the implementation of a neural network approach to improve one of the most transcendent traffic conditions: the mobility of the cars in any particular junction. Neural networks have proven to be an effective paradigm of modern computing, providing extensive benefits in a wide range of applications. In this sense, the paper uses a BPNN (backpropagation neural network) model. The three input nodes are related to: n1: the amount of cars in the road; n2: the green light interval; and n3:the distance (taking into account the quantity of cars) between the first car in the intersection and the last car in the longest line in front of it. In particular, the paper promotes that each traffic light signal will be capable of offering a new green light interval according to the requirement and constrains of the vitality, ensuring a vehicular mobility level greater than 65%. To assess this idea, the paper presents two experiments confronting the real world data versus experimental results. For example, in the first experiment, the BPNN improves the performance of the real data about vehicular mobility in almost 30%. Finally, some conclusions and future work are presented.展开更多
In developing countries, the numbers of traffic accidents, injuries and fatalities are very high and tend to increase atsignalized intersections. For example, in Ho Chi Minh City (HCMC) of Vietnam, the number of acc...In developing countries, the numbers of traffic accidents, injuries and fatalities are very high and tend to increase atsignalized intersections. For example, in Ho Chi Minh City (HCMC) of Vietnam, the number of accidents at signalized intersectionsaccounted for 45% of the total accidents at all the intersections. This fact leads to strong necessity for analyzing traffic safety atsignalized intersections. Nevertheless, the historical accident data in HCMC is not available for deep analysis, this study uses videocameras to capture and analyze conflicts that potentially lead to accidents using TCT (traffic conflict technique). Conflict severityidentification is one of the most significant steps to evaluate traffic safety at signalized intersections using TCT. Six zones (seriousconflict, common conflict, non-conflict, highest potential serious conflict, potential serious conflict, and potential common conflict) areexplored in this study to clarify conflict severity. This result is based on being the cut off value between serious conflicts and commonconflicts, according to 85% cumulative frequency of TTC (time to collision) and CS (conflict speed) under 3,050 samples size whichwere observed at 10 signalized intersections during August-November, 2014. Such a deep understanding is a scientific basis to studyhow to apply TCT to evaluate traffic safety at signalized intersections under mixed traffic conditions.展开更多
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource effic...Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.展开更多
Driving behavior modeling is very important in the research area of road traffic systems safety analysis. The characteristics of action of recovering from erroneous driving condition underlying road traffic accident o...Driving behavior modeling is very important in the research area of road traffic systems safety analysis. The characteristics of action of recovering from erroneous driving condition underlying road traffic accident or incident scenarios is quantitatively analyzed, the model of action of recovering from erroneous driving condition is set up according to the identification of erroneous driving condition and the measurement of correction from erroneous driving condition. And then, the probability of action of recovering from erroneous driving condition has been measured based on a revised decision tree. The measure process uses a combination of test data and subjective judgments of driving behavior. It can provide a very helpful theoretical basis for the further analysis of driving behavior in road traffic system.展开更多
The objective of this work is to develop a novel feature for traffic flow models, when traffic queues on two-way arterials periodically extend until then they block an upstream signal in oversaturated conditions. The ...The objective of this work is to develop a novel feature for traffic flow models, when traffic queues on two-way arterials periodically extend until then they block an upstream signal in oversaturated conditions. The new model, proposed as conditional cell transmission model (CCTM) has been developed with two improvements. First, cell transmission model (CTM) is expanded for two-way arterials by taking account of all diverging and merging activities at intersections. Second, a conditional cell is added to simulate periodic spillback and blockages at an intersection. The results of experiments for a multilane, two-way, three-signal sample network demonstrate that CCTM can accommodate various traffic demands and accurate representation of blockages at intersections. The delay of left turns is underestimated by 40 % in moderate conditions and by 58% in oversamrated condition when using the CTM rather than CCTM. Finally, the consistency between HCS 2000 and CCTM shows that CCTM is a reliable methodology of modeling traffic flow in oversaturated condition.展开更多
The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that c...The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.展开更多
In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Opti...In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.展开更多
To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively ap...To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy.展开更多
Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOL...Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.展开更多
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.
文摘Road transport safety policies have emphasized road infrastructure safety design and engineering as a core function.However,in developing countries like Vietnam,this approach has been slower to adopt,resulting in substandard roads.In-depth studies of accident locations indicate that road environment factors contribute significantly to road accidents in Vietnam and road design features are associated with specific accident types and hazards.Proactive and reactive approaches,such as road safety audit,inspection,assessment,and treatment of hazardous locations,are necessary to ensure that the road and its environment are safe.This paper provides an overview of road safety in Vietnam in general,and Ho Chi Minh in particular,including its factors and characteristics,as well as road infrastructure safety improvements.The iRap tool for road safety inspection and assessment is highlighted as a potential method for systematically analyzing road infrastructure deficiencies and providing targeted countermeasures to improve road safety under mixed traffic conditions.
文摘Strategic maintenance plays a key role in ensuring high availability and utilization of the haul trucks,and as equipment began to grow more complex towards the end of the 20th century,there was a need for a proactive maintenance strategy,which led to the development of condition-based maintenance.Realtime condition monitoring(RTCM)is the ability to perform condition monitoring in real-time and has the ability to alert maintenance and operations of abnormal conditions.These alarms can be used as an indication leading to a problem,and if a suitable corrective action is initiated in time,it could result in significant savings of equipment downtime and repair costs.This study aims to compare some maintenance performance indicators prior to and after implementation of RTCM strategy at a mine site using some tests of statistical significance.The study also indicated the presence of seasonality in the data,and thus the data was deseasonalized and detrended prior to being subjected to the statistical tests.Finally,the results indicated that RTCM strategy has proven to be successful in improving the availability for some of the failure categories chosen in this study.
基金Project(D101106049710005) supported by the Beijing Science Foundation Program,ChinaProject(61104164) supported by the National Natural Science Foundation,China
文摘A pre-selection space time model was proposed to estimate the traffic condition at poor-data-detector,especially non-detector locations.The space time model is better to integrate the spatial and temporal information comprehensibly.Firstly,the influencing factors of the "cause nodes" were studied,and then the pre-selection "cause nodes" procedure which utilizes the Pearson correlation coefficient to evaluate the relevancy of the traffic data was introduced.Finally,only the most relevant data were collected to compose the space time model.The experimental results with the actual data demonstrate that the model performs better than other three models.
文摘The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52072108)the Natural Science Foundation of Anhui Province, China (Grant No. 2208085ME148)the Open Fund for State Key Laboratory of Cognitive Intelligence, China (Grant No. W2022JSKF0504)。
文摘In order to analyze and learn the difference in car-following behavior between normal and rainy days, we first collect car-following trajectory data of an urban elevated road on normal and rainy days by microwave radar and analyze the differences in speed, relative speed, acceleration, space headway, and time headway among data through statistics. Secondly, owing to the time-series characteristics of car-following data, we use the long short-term memory(LSTM) neural network optimized by attention mechanism(AM) and sparrow search algorithm(SSA) to learn the different car-following behaviors under different weather conditions and build corresponding models(ASL-Normal, ASL-Rain, where ASL stands for AM-SSA-LSTM), respectively. Finally, the simulation test shows that the mean square error(MSE) and reciprocal of time-to-collision(RTTC) of the ASL model are better than those of LSTM and intelligent diver model(IDM), which is closer to the real data. The ASL model can better learn different driving behaviors on normal and rainy days. However,it has a higher sensitivity to weather conditions from cross test on normal and rainy data-sets which need classification training or sample diversification processing. In the car-following platoon simulation, the stability performances of two models are excellent, which can describe the basic characteristics of traffic flow on normal and rainy days. Comparing with ASL-Rain model, the convergence time of ASL-Normal is shorter, reflecting that cautious driving behavior on rainy days will reduce traffic efficiency to a certain extent. However, ASL-Normal model produces a more severe and frequent traffic oscillation within a shorter period because of aggressive driving behavior on normal days.
基金Project(51108343) supported by the National Natural Science Foundation of ChinaProject(06121) supported by University of Transportation Center for Alabama, USA
文摘In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of constant values to simulate traffic flow movement, estimate the average delay of the network and search for an optimal traffic signal timing plan. A case study was given to demonstrate that the proposed methodology can capture unique phenomena in oversaturated conditions such as forward wave, spillback and lane entrance blockage. The results show that CTM underestimates travel time by 25% when compared to Simtraffic, while the enhanced CTM underestimates by only 3%. A second case study shows that a dynamic signal timing plan is superior to a fixed signal timing plan in the term of average delay.
基金Supported by the Programs for the New Century Excellent Talents in University under Grant No. NCET-08-0038the National Natural Science Foundation of China under Grant Nos. 70701002, 70971007 and 70521001the State Key Basic Research Program of China under Grant No. 2006CB705503
文摘In this paper, we use the speed-gradient model proposed by Jiang et al. [Transp. Res. B 36 (2002) 405] to study the effect of boundary condition on shock and rarefaction wave. Our numerical results show that this model can reproduce the evolution of the two traffic waves, which further proves that this model can be used to perfectly explore the consequences caused by various boundary conditions.
文摘Regarding the postulate of traffic infrastructure and vehicles, much attention should be given to the effect of road conditions on accidents. With large numbers of traffic accidents on Shenda Freeway, Liaoning Province, Harbin City and others in P. R. China, parameters and the effect of accidents caused by horizontal alignment, vertical alignment, cross section and intersection are studied systematically The disciplinary analysis of these effects are presented in this paper. The viewpoint is acknowledged that high sub grade and steep slopes are against traffic safety, which is common and ignored in high-usage highways in China. Design parameters of the current design criteria and the corresponding countermeasures are suggested for safety on our highways.
文摘this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.
文摘The paper promotes the implementation of a neural network approach to improve one of the most transcendent traffic conditions: the mobility of the cars in any particular junction. Neural networks have proven to be an effective paradigm of modern computing, providing extensive benefits in a wide range of applications. In this sense, the paper uses a BPNN (backpropagation neural network) model. The three input nodes are related to: n1: the amount of cars in the road; n2: the green light interval; and n3:the distance (taking into account the quantity of cars) between the first car in the intersection and the last car in the longest line in front of it. In particular, the paper promotes that each traffic light signal will be capable of offering a new green light interval according to the requirement and constrains of the vitality, ensuring a vehicular mobility level greater than 65%. To assess this idea, the paper presents two experiments confronting the real world data versus experimental results. For example, in the first experiment, the BPNN improves the performance of the real data about vehicular mobility in almost 30%. Finally, some conclusions and future work are presented.
文摘In developing countries, the numbers of traffic accidents, injuries and fatalities are very high and tend to increase atsignalized intersections. For example, in Ho Chi Minh City (HCMC) of Vietnam, the number of accidents at signalized intersectionsaccounted for 45% of the total accidents at all the intersections. This fact leads to strong necessity for analyzing traffic safety atsignalized intersections. Nevertheless, the historical accident data in HCMC is not available for deep analysis, this study uses videocameras to capture and analyze conflicts that potentially lead to accidents using TCT (traffic conflict technique). Conflict severityidentification is one of the most significant steps to evaluate traffic safety at signalized intersections using TCT. Six zones (seriousconflict, common conflict, non-conflict, highest potential serious conflict, potential serious conflict, and potential common conflict) areexplored in this study to clarify conflict severity. This result is based on being the cut off value between serious conflicts and commonconflicts, according to 85% cumulative frequency of TTC (time to collision) and CS (conflict speed) under 3,050 samples size whichwere observed at 10 signalized intersections during August-November, 2014. Such a deep understanding is a scientific basis to studyhow to apply TCT to evaluate traffic safety at signalized intersections under mixed traffic conditions.
文摘Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
文摘Driving behavior modeling is very important in the research area of road traffic systems safety analysis. The characteristics of action of recovering from erroneous driving condition underlying road traffic accident or incident scenarios is quantitatively analyzed, the model of action of recovering from erroneous driving condition is set up according to the identification of erroneous driving condition and the measurement of correction from erroneous driving condition. And then, the probability of action of recovering from erroneous driving condition has been measured based on a revised decision tree. The measure process uses a combination of test data and subjective judgments of driving behavior. It can provide a very helpful theoretical basis for the further analysis of driving behavior in road traffic system.
基金Project(51108343) supported by the National Natural Science Foundation of ChinaProject(06121) supported by University of Transportation Center for Alabama,USA
文摘The objective of this work is to develop a novel feature for traffic flow models, when traffic queues on two-way arterials periodically extend until then they block an upstream signal in oversaturated conditions. The new model, proposed as conditional cell transmission model (CCTM) has been developed with two improvements. First, cell transmission model (CTM) is expanded for two-way arterials by taking account of all diverging and merging activities at intersections. Second, a conditional cell is added to simulate periodic spillback and blockages at an intersection. The results of experiments for a multilane, two-way, three-signal sample network demonstrate that CCTM can accommodate various traffic demands and accurate representation of blockages at intersections. The delay of left turns is underestimated by 40 % in moderate conditions and by 58% in oversamrated condition when using the CTM rather than CCTM. Finally, the consistency between HCS 2000 and CCTM shows that CCTM is a reliable methodology of modeling traffic flow in oversaturated condition.
基金the Six Heights of Talent in Jiangsu Prov-ince(No.06-E-044).
文摘The paper puts forward a variance-time plots method based on slide-window mechanism tocalculate the Hurst parameter to detect Distribute Denial of Service(DDoS)attack in real time.Basedon fuzzy logic technology that can adjust itself dynamically under the fuzzy rules,an intelligent DDoSjudgment mechanism is designed.This new method calculates the Hurst parameter quickly and detectsDDoS attack in real time.Through comparing the detecting technologies based on statistics andfeature-packet respectively under different experiments,it is found that the new method can identifythe change of the Hurst parameter resulting from DDoS attack traffic with different intensities,andintelligently judge DDoS attack self-adaptively in real time.
文摘In order to get a globally optimized solution for the Elevator Group Control System (EGCS) scheduling problem, an algorithm with an overall optimization function is needed. In this study, Real-time Particle Swarm Optimization (RPSO) is proposed to find an optimal solution to the EGCS scheduling problem. Different traffic patterns and controller mechanisms for EGCS are analyzed. This study focuses on up-peak traffic because of its critical importance to modern office buildings. Simulation results show that EGCS based on Multi-Agent Systems (MAS) using RPSO gives good results for up-peak EGCS scheduling problem. Besides, the elevator real-time scheduling and reallocation functions are realized based on RPSO in case new information is available or the elevator becomes busy because it is unavailable or full. This study contributes a new scheduling algorithm for EGCS, and expands the application of PSO.
文摘To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy.
基金supported by Heilongjiang Provincial Natural Science Foundation of China(LH2023E055)the National Key R&D Program of China(2021YFB2600502).
文摘Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.