The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation...The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation.However,existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs.Thus,the interpretability of CNNs has come into the spotlight.Since medical imaging data are limited,many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public Image Net datasets by the transfer learning method.Unfortunately,this generates many unreliable parameters and makes it difficult to generate plausible explanations from these models.In this study,we trained from scratch rather than relying on transfer learning,creating a novel interpretable approach for autonomously segmenting the left ventricle with a cardiac MRI.Our enhanced GPU training system implemented interpretable global average pooling for graphics using deep learning.The deep learning tasks were simplified.Simplification included data management,neural network architecture,and training.Our system monitored and analyzed the gradient changes of different layers with dynamic visualizations in real-time and selected the optimal deployment model.Our results demonstrated that the proposed method was feasible and efficient:the Dice coefficient reached 94.48%,and the accuracy reached 99.7%.It was found that no current transfer learning models could perform comparably to the ImageNet transfer learning architectures.This model is lightweight and more convenient to deploy on mobile devices than transfer learning models.展开更多
Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualizati...Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualization. Our approach can optimize the organization of models in accordance with the quadtree based terrain, which makes the parallelization easier. Through minimizing the draw call within one rendering process, our approach can reduce the time cost of each frame and improve the framerate greatly. Hereby, our system can handle large-scale detailed models with high diversity and also can afford the ability to adjust the rendering strategy automatically according to the state of the hardware.展开更多
●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of th...●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.展开更多
With the dramatic development of spatial data in- frastructure, CyberGIS has become significant for geospatial data sharing. Due to the large number of concurrent users and large volume of vector data, CyberGIS faces ...With the dramatic development of spatial data in- frastructure, CyberGIS has become significant for geospatial data sharing. Due to the large number of concurrent users and large volume of vector data, CyberGIS faces a great chal- lenge in how to improve performance. The real-time visual- ization of vector maps is the most common function in Cyber- GIS applications, and it is time-consuming especially when the data volume becomes large. So, how to improve the effi- ciency of visualization of large vector maps is still a signif- icant research direction for GIScience scientists. In this re- search, we review the existing three optimization strategies, and determine that the third category strategy (i.e., parallel optimization) is appropriate for the real-time visualization of large vector maps. One of the key issues of parallel optimiza- tion is how to decompose the real-time visualization tasks into balanced sub tasks while taking into consideration the spatial heterogeneous characteristics. We put forward some rules that the decomposition should conform to, and design a real-time visualization framework for large vector maps. We focus on a balanced decomposition approach that can assure efficiency and effectiveness. Considering the spatial hetero- geneous characteristic of vector data, we use a "horizontal grid, vertical multistage" approach to construct a spatial point distribution information grid. The load balancer analyzes the spatial characteristics of the map requests and decomposes the real-time viewshed into multiple balanced sub viewsheds.Then, all the sub viewsheds are distributed to multiple server nodes to be executed in parallel, so as to improve the real- time visualization efficiency of large vector maps. A group of experiments have been conducted by us. The analysis results demonstrate that the approach proposed in this research has the ability of balanced decomposition, and it is efficient and effective for all geometry types of vector data.展开更多
BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications...BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications,a lack of effective treatment strategies,and substantial socioeconomic burdens,it has become an urgent public health issue that requires management and resolution.Adolescent T2DM differs from adult T2DM.Despite a significant increase in our understanding of youth-onset T2DM over the past two decades,the related review and evidence-based content remain limited.AIM To visualize the hotspots and trends in pediatric and adolescent T2DM research and to forecast their future research themes.METHODS This study utilized the terms“children”,“adolescents”,and“type 2 diabetes”,retrieving relevant articles published between 1983 and 2023 from three citation databases within the Web of Science Core Collection(SCI,SSCI,ESCI).Utilizing CiteSpace and VoSviewer software,we analyze and visually represent the annual output of literature,countries involved,and participating institutions.This allows us to predict trends in this research field.Our analysis encompasses co-cited authors,journal overlays,citation overlays,time-zone views,keyword analysis,and reference analysis,etc.RESULTS A total of 9210 articles were included,and the annual publication volume in this field showed a steady growth trend.The United States had the highest number of publications and the highest H-index.The United States also had the most research institutions and the strongest research capacity.The global hot journals were primarily diabetes professional journals but also included journals related to nutrition,endocrinology,and metabolism.Keyword analysis showed that research related to endothelial dysfunction,exposure risk,cardiac metabolic risk,changes in gut microbiota,the impact on comorbidities and outcomes,etc.,were emerging keywords.They have maintained their popularity in this field,suggesting that these areas have garnered significant research interest in recent years.CONCLUSION Pediatric and adolescent T2DM is increasingly drawing global attention,with genes,behaviors,environmental factors,and multisystemic interventions potentially emerging as future research hot spots.展开更多
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro...The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.展开更多
With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary su...With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.展开更多
Street-level visualization is an important application of 3D city models.Challenges to street-level visualization include the cluttering of buildings due to fine detail and visualization performance.In this paper,a no...Street-level visualization is an important application of 3D city models.Challenges to street-level visualization include the cluttering of buildings due to fine detail and visualization performance.In this paper,a novel method is proposed for streetlevel visualization based on visual saliency evaluation.The basic idea of the method is to preserve these salient buildings in a scene while removing those that are non-salient.The method can be divided into pre-processing procedures and real-time visualization.The first step in pre-processing is to convert 3D building models at higher Levels of Detail(Lo Ds) into LoD 1 models with simplified ground plans.Then,a number of index viewpoints are created along the streets; these indices refer to both the position and the direction of each street site.A visual saliency value is computed for each building,with respect to the index site,based on a visual difference between the original model and the generalized model.We calculate and evaluate three methods for visual saliency:local difference,global difference and minimum projection area.The real-time visualization process begins by mapping the observer to its closest indices.The street view is then generated based on the building information stored in those indexes.A user study shows that the local visual saliency method performs better than do the global visual saliency,area and image-based methods and that the framework proposed in this paper may improve the performance of 3D visualization.展开更多
AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasou...AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasound image in real time by merging the ultrasound image with a multiplanar reconstruction computed tomography(CT)image,using pre-scanned CT volume data.The ultrasound used was EUB-8500with a convex probe EUP-C514.The RVS images were evaluated based on 3 levels,namely,excellent,good and poor,by the displacement in position.RESULTS:By combining the objectivity of CT with free scanning using RVS,it was possible to easily interpret the relationship between lesions and the surrounding organs as well as the position of vascular structures.The resulting evaluation levels of the RVS images were12 excellent(pancreatic cancer,bile duct cancer,cholecystolithiasis and cholangiocellular carcinoma)and 3 good(pancreatic cancer and gallbladder cancer).Compared with conventional B-mode ultrasonography and CT,RVS images achieved a rate of 80%superior visualization and 20%better visualization.CONCLUSION:RVS has potential usefulness in objective visualization and diagnosis in the field of biliary and pancreatic diseases.展开更多
One of the most indispensable needs of life is food and its worldwide availability endorsement has made agriculture an essential sector in recent years. As the technology evolved, the need to maintain a good and suita...One of the most indispensable needs of life is food and its worldwide availability endorsement has made agriculture an essential sector in recent years. As the technology evolved, the need to maintain a good and suitable climate in the greenhouse became imperative to ensure that the indoor plants are more productive hence the agriculture sector was not left behind. That notwithstanding, the introduction and deployment of IoT technology in agriculture solves many problems and increases crop production. This paper focuses mainly on the deployment of the Internet of Things (IoT) in acquiring real- time data of environmental parameters in the greenhouse. Various IoT technologies that can be applicable in greenhouse monitoring system was presented and in the proposed model, a method is developed to send the air temperature and humidity data obtained by the DHT11 sensor to the cloud using an ESP8266-based NodeMCU and firstly to the cloud platform Thing- Speak, and then to Adafruit.IO in which MQTT protocol was used for the reception of sensor data to the application layer referred as Human-Machine Interface. The system has been completely implemented in an actual prototype, allowing the acquiring of data and the publisher/subscriber concept used for communication. The data is published with a broker’s aid, which is responsible for transferring messages to the intended clients based on topic choice. Lastly, the functionality testing of MQTT was carried out and the results showed that the messages are successfully published.展开更多
In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML...In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.展开更多
A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model ...A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.展开更多
The development of the Global Navigation System and wireless networking technologies have changed the way we live, communicate, share information and even the collection of geospatial data in the field. Along with wir...The development of the Global Navigation System and wireless networking technologies have changed the way we live, communicate, share information and even the collection of geospatial data in the field. Along with wireless networking technologies, the improvement in computational power of handheld devices such as smartphones, tablet PCs, ultra-mobile personal computers (UMPCs) and netbook computers allow field users to connect, store and stream large amounts of geospatial data from the web-server. Nowadays, geospatial data collection is more flexible and timely manner. In this paper we discuss field data collection using a smartphone and web-based GIS system, which collects, integrates, visualizes and analyzes the collected data in real-time. We built a web-GIS system for creating a user account, acquiring coordinates from GPS embedded devices or wireless access points, and providing a user-friendly survey form. The collected data can be visualized and analyzed by performing thematic mapping, labeling, symbolizing, querying and generating a summary report. We tested this system on a university campus management system, in which we collected information on illegal disposal sites and parking events within the university campus.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formatio...LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formation recognition,reservoir modeling and model updating in real time.We studied the key technologies related to real-time LWD data visual interpretation and geo-steering and developed computer software with Chinese intellectual property rights covering the following important aspects: 1) real-time computer communication of well site LWD data;2) visualization of geological model and borehole information;3) real-time interpretation of LWD data;4) real-time geological model updating and geo-steering technology.We use field application examples to demonstrate the feasibility and validity of the proposed technologies.展开更多
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc...High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.展开更多
BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional mul...BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements ...BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis.METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded.A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer.RESULTS A total of 1674 publications were included in the study,with an observed annual increase in the number of publications spanning from 1990 to 2022.The United States of America emerged as the predominant contributor,while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output.Notably,Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude.Furthermore,Peter Bärtsch emerged as the author with the highest number of cited articles.Keyword analysis identified hypoxia,exercise,acclimatization,acute and chronic mountain sickness,pulmonary hypertension,metabolism,and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude.CONCLUSION Over the past 32 years,research on the cardiovascular system in high-altitude regions has been steadily increasing.Future research in this field may focus on areas such as hypoxia adaptation,metabolism,and cardiopulmonary exercise.Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.展开更多
基金The National Natural Science Foundation of China (62176048)provided funding for this research.
文摘The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation.However,existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs.Thus,the interpretability of CNNs has come into the spotlight.Since medical imaging data are limited,many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public Image Net datasets by the transfer learning method.Unfortunately,this generates many unreliable parameters and makes it difficult to generate plausible explanations from these models.In this study,we trained from scratch rather than relying on transfer learning,creating a novel interpretable approach for autonomously segmenting the left ventricle with a cardiac MRI.Our enhanced GPU training system implemented interpretable global average pooling for graphics using deep learning.The deep learning tasks were simplified.Simplification included data management,neural network architecture,and training.Our system monitored and analyzed the gradient changes of different layers with dynamic visualizations in real-time and selected the optimal deployment model.Our results demonstrated that the proposed method was feasible and efficient:the Dice coefficient reached 94.48%,and the accuracy reached 99.7%.It was found that no current transfer learning models could perform comparably to the ImageNet transfer learning architectures.This model is lightweight and more convenient to deploy on mobile devices than transfer learning models.
基金Supported by National Natural Science Foundation of China(Nos.61170205,61232014,61472010 and 61421062)National Key Technology Support Program of China(No.2013BAK03B07)
文摘Complex urban scenery is generally composed of gigantic amount of detailed buildings, efficient representation and rendering are essential for its visualization. We present an accelerating method for urban visualization. Our approach can optimize the organization of models in accordance with the quadtree based terrain, which makes the parallelization easier. Through minimizing the draw call within one rendering process, our approach can reduce the time cost of each frame and improve the framerate greatly. Hereby, our system can handle large-scale detailed models with high diversity and also can afford the ability to adjust the rendering strategy automatically according to the state of the hardware.
基金Supported by research grants from the National Key Research and Development Program of China(No.2020YFE0204400)the National Natural Science Foundation of China(No.82271042+1 种基金No.52203191)the Zhejiang Province Key Research and Development Program(No.2023C03090).
文摘●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.
文摘With the dramatic development of spatial data in- frastructure, CyberGIS has become significant for geospatial data sharing. Due to the large number of concurrent users and large volume of vector data, CyberGIS faces a great chal- lenge in how to improve performance. The real-time visual- ization of vector maps is the most common function in Cyber- GIS applications, and it is time-consuming especially when the data volume becomes large. So, how to improve the effi- ciency of visualization of large vector maps is still a signif- icant research direction for GIScience scientists. In this re- search, we review the existing three optimization strategies, and determine that the third category strategy (i.e., parallel optimization) is appropriate for the real-time visualization of large vector maps. One of the key issues of parallel optimiza- tion is how to decompose the real-time visualization tasks into balanced sub tasks while taking into consideration the spatial heterogeneous characteristics. We put forward some rules that the decomposition should conform to, and design a real-time visualization framework for large vector maps. We focus on a balanced decomposition approach that can assure efficiency and effectiveness. Considering the spatial hetero- geneous characteristic of vector data, we use a "horizontal grid, vertical multistage" approach to construct a spatial point distribution information grid. The load balancer analyzes the spatial characteristics of the map requests and decomposes the real-time viewshed into multiple balanced sub viewsheds.Then, all the sub viewsheds are distributed to multiple server nodes to be executed in parallel, so as to improve the real- time visualization efficiency of large vector maps. A group of experiments have been conducted by us. The analysis results demonstrate that the approach proposed in this research has the ability of balanced decomposition, and it is efficient and effective for all geometry types of vector data.
基金Supported by the National Natural Science Foundation of China,No.82105018 and No.81903950.
文摘BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications,a lack of effective treatment strategies,and substantial socioeconomic burdens,it has become an urgent public health issue that requires management and resolution.Adolescent T2DM differs from adult T2DM.Despite a significant increase in our understanding of youth-onset T2DM over the past two decades,the related review and evidence-based content remain limited.AIM To visualize the hotspots and trends in pediatric and adolescent T2DM research and to forecast their future research themes.METHODS This study utilized the terms“children”,“adolescents”,and“type 2 diabetes”,retrieving relevant articles published between 1983 and 2023 from three citation databases within the Web of Science Core Collection(SCI,SSCI,ESCI).Utilizing CiteSpace and VoSviewer software,we analyze and visually represent the annual output of literature,countries involved,and participating institutions.This allows us to predict trends in this research field.Our analysis encompasses co-cited authors,journal overlays,citation overlays,time-zone views,keyword analysis,and reference analysis,etc.RESULTS A total of 9210 articles were included,and the annual publication volume in this field showed a steady growth trend.The United States had the highest number of publications and the highest H-index.The United States also had the most research institutions and the strongest research capacity.The global hot journals were primarily diabetes professional journals but also included journals related to nutrition,endocrinology,and metabolism.Keyword analysis showed that research related to endothelial dysfunction,exposure risk,cardiac metabolic risk,changes in gut microbiota,the impact on comorbidities and outcomes,etc.,were emerging keywords.They have maintained their popularity in this field,suggesting that these areas have garnered significant research interest in recent years.CONCLUSION Pediatric and adolescent T2DM is increasingly drawing global attention,with genes,behaviors,environmental factors,and multisystemic interventions potentially emerging as future research hot spots.
基金supported by theKorea Industrial Technology Association(KOITA)Grant Funded by the Korean government(MSIT)(No.KOITA-2023-3-003)supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-2020-0-01808)Supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)。
文摘The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.
基金Supported by National Natural Science Foundation of China,No.82070638 and No.81770621and JSPS KAKENHI,No.JP18H02866.
文摘With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.
基金supported by the National Natural Science Foundation of China(Grant No.41201486)the National Key Technologies R&D Program of China(Grant No.SQ2013GX07E00985)the project of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD) in the Collaborative Innovation Center of Modern Grain Circulation and Security,Nanjing University of Finance and Economics
文摘Street-level visualization is an important application of 3D city models.Challenges to street-level visualization include the cluttering of buildings due to fine detail and visualization performance.In this paper,a novel method is proposed for streetlevel visualization based on visual saliency evaluation.The basic idea of the method is to preserve these salient buildings in a scene while removing those that are non-salient.The method can be divided into pre-processing procedures and real-time visualization.The first step in pre-processing is to convert 3D building models at higher Levels of Detail(Lo Ds) into LoD 1 models with simplified ground plans.Then,a number of index viewpoints are created along the streets; these indices refer to both the position and the direction of each street site.A visual saliency value is computed for each building,with respect to the index site,based on a visual difference between the original model and the generalized model.We calculate and evaluate three methods for visual saliency:local difference,global difference and minimum projection area.The real-time visualization process begins by mapping the observer to its closest indices.The street view is then generated based on the building information stored in those indexes.A user study shows that the local visual saliency method performs better than do the global visual saliency,area and image-based methods and that the framework proposed in this paper may improve the performance of 3D visualization.
文摘AIM:To evaluate the usefulness of real-time virtual sonography(RVS)in biliary and pancreatic diseases.METHODS:This study included 15 patients with biliary and pancreatic diseases.RVS can be used to observe an ultrasound image in real time by merging the ultrasound image with a multiplanar reconstruction computed tomography(CT)image,using pre-scanned CT volume data.The ultrasound used was EUB-8500with a convex probe EUP-C514.The RVS images were evaluated based on 3 levels,namely,excellent,good and poor,by the displacement in position.RESULTS:By combining the objectivity of CT with free scanning using RVS,it was possible to easily interpret the relationship between lesions and the surrounding organs as well as the position of vascular structures.The resulting evaluation levels of the RVS images were12 excellent(pancreatic cancer,bile duct cancer,cholecystolithiasis and cholangiocellular carcinoma)and 3 good(pancreatic cancer and gallbladder cancer).Compared with conventional B-mode ultrasonography and CT,RVS images achieved a rate of 80%superior visualization and 20%better visualization.CONCLUSION:RVS has potential usefulness in objective visualization and diagnosis in the field of biliary and pancreatic diseases.
文摘One of the most indispensable needs of life is food and its worldwide availability endorsement has made agriculture an essential sector in recent years. As the technology evolved, the need to maintain a good and suitable climate in the greenhouse became imperative to ensure that the indoor plants are more productive hence the agriculture sector was not left behind. That notwithstanding, the introduction and deployment of IoT technology in agriculture solves many problems and increases crop production. This paper focuses mainly on the deployment of the Internet of Things (IoT) in acquiring real- time data of environmental parameters in the greenhouse. Various IoT technologies that can be applicable in greenhouse monitoring system was presented and in the proposed model, a method is developed to send the air temperature and humidity data obtained by the DHT11 sensor to the cloud using an ESP8266-based NodeMCU and firstly to the cloud platform Thing- Speak, and then to Adafruit.IO in which MQTT protocol was used for the reception of sensor data to the application layer referred as Human-Machine Interface. The system has been completely implemented in an actual prototype, allowing the acquiring of data and the publisher/subscriber concept used for communication. The data is published with a broker’s aid, which is responsible for transferring messages to the intended clients based on topic choice. Lastly, the functionality testing of MQTT was carried out and the results showed that the messages are successfully published.
文摘In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the National Natural Science Foundation of China(No.51339003 and No.51439005)
文摘A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.
文摘The development of the Global Navigation System and wireless networking technologies have changed the way we live, communicate, share information and even the collection of geospatial data in the field. Along with wireless networking technologies, the improvement in computational power of handheld devices such as smartphones, tablet PCs, ultra-mobile personal computers (UMPCs) and netbook computers allow field users to connect, store and stream large amounts of geospatial data from the web-server. Nowadays, geospatial data collection is more flexible and timely manner. In this paper we discuss field data collection using a smartphone and web-based GIS system, which collects, integrates, visualizes and analyzes the collected data in real-time. We built a web-GIS system for creating a user account, acquiring coordinates from GPS embedded devices or wireless access points, and providing a user-friendly survey form. The collected data can be visualized and analyzed by performing thematic mapping, labeling, symbolizing, querying and generating a summary report. We tested this system on a university campus management system, in which we collected information on illegal disposal sites and parking events within the university campus.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金funded by several Co. of CNPC and SINOPECChina National Science and Technology Major Projects of Oil & Gas (2011ZX05009-003)"863" Projects (2006AA060105)
文摘LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formation recognition,reservoir modeling and model updating in real time.We studied the key technologies related to real-time LWD data visual interpretation and geo-steering and developed computer software with Chinese intellectual property rights covering the following important aspects: 1) real-time computer communication of well site LWD data;2) visualization of geological model and borehole information;3) real-time interpretation of LWD data;4) real-time geological model updating and geo-steering technology.We use field application examples to demonstrate the feasibility and validity of the proposed technologies.
基金supported by the National Key Research and Development Project of China(Nos.2022YFB3708200 and 2021YFB3703500)the National Natural Science Foundation of China(Nos.52271089 and 52001023).
文摘High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel.
基金Supported by The Key Medical Specialty Nurturing Program of Foshan During The 14th Five-Year Plan Period,No.FSPY145205The Medical Research Project of Foshan Health Bureau,No.20230814A010024+1 种基金The Guangzhou Science and Technology Plan Project,No.202102010251the Guangdong Science and Technology Program,No.2017ZC0222.
文摘BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
基金Supported by Natural Science Foundation of Sichuan Province,No.2022NSFSC1295the 2021 Annal Project of the General Hospital of Western Theater Command,No.2021-XZYG-B31.
文摘BACKGROUND When exposed to high-altitude environments,the cardiovascular system undergoes various changes,the performance and mechanisms of which remain controversial.AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis.METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded.A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer.RESULTS A total of 1674 publications were included in the study,with an observed annual increase in the number of publications spanning from 1990 to 2022.The United States of America emerged as the predominant contributor,while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output.Notably,Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude.Furthermore,Peter Bärtsch emerged as the author with the highest number of cited articles.Keyword analysis identified hypoxia,exercise,acclimatization,acute and chronic mountain sickness,pulmonary hypertension,metabolism,and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude.CONCLUSION Over the past 32 years,research on the cardiovascular system in high-altitude regions has been steadily increasing.Future research in this field may focus on areas such as hypoxia adaptation,metabolism,and cardiopulmonary exercise.Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.