The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algori...The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algorithm, together with the analysis on data and information of horizontal well fracturing in shale gas reservoirs, this paper presents a method for intelligent identification and real-time warning of diverse complex events in horizontal well fracturing. An identification model for "point" events in fracturing is established based on the Att-BiLSTM neural network, along with the broad learning system (BLS) and the BP neural network, and it realizes the intelligent identification of the start/end of fracturing, formation breakdown, instantaneous shut-in, and other events, with an accuracy of over 97%. An identification model for "phase" events in fracturing is established based on enhanced Unet++ network, and it realizes the intelligent identification of pump ball, pre-acid treatment, temporary plugging fracturing, sand plugging, and other events, with an error of less than 0.002. Moreover, a real-time prediction model for fracturing pressure is built based on the Att-BiLSTM neural network, and it realizes the real-time warning of diverse events in fracturing. The proposed method can provide an intelligent, efficient and accurate identification of events in fracturing to support the decision-making.展开更多
As one of the provinces of highest economic growth in coastal China,Zhejiang Province is experiencing serious geological disasters during the past development of economy.The main kinds of geo-hazards include landslide...As one of the provinces of highest economic growth in coastal China,Zhejiang Province is experiencing serious geological disasters during the past development of economy.The main kinds of geo-hazards include landslides,rock falls and debris-flows in Zhejiang Province,which are mainly induced by intensive rainfall during typhoon season or by long-term rainfall from May to June every year.Thus,展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the curre...Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the current fire safety situation of LIBs.In this work,we report an early warning method of TR with online electrochemical impedance spectroscopy(EIS)monitoring,which overcomes the shortcomings of warning methods based on traditional signals such as temperature,gas,and pressure with obvious delay and high cost.With in-situ data acquisition through accelerating rate calorimeter(ARC)-EIS test,the crucial features of TR were extracted using the RReliefF algorithm.TR mechanisms corresponding to the features at specific frequencies were analyzed.Finally,a three-level warning strategy for single battery,series module,and parallel module was formulated,which can successfully send out an early warning signal ahead of the self-heating temperature of battery under thermal abuse condition.The technology can provide a reliable basis for the timely intervention of battery thermal management and fire protection systems and is expected to be applied to electric vehicles and energy storage devices to realize early warning and improve battery safety.展开更多
Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelli...Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelligent self-powered remote IoT fire warning system,by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films.The flexible films,prepared by a convenient solution mixing,display p-type characteristic with excellent high-temperature stability,flame retardancy and TE(power factor of 239.7±15.8μW m^(-1) K^(-2))performances.The comprehensive morphology and structural analyses shed light on the underlying mechanisms.And the assembled TE devices(TEDs)exhibit fast fire warning with adjustable warning threshold voltages(1–10 mV).Excitingly,an ultrafast fire warning response time of~0.1 s at 1 mV threshold voltage is achieved,rivaling many state-of-the-art systems.Furthermore,TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure.Finally,a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier,analogto-digital converter and Bluetooth module.By combining TE characteristics,high-temperature stability and flame retardancy with wireless IoT signal transmission,TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.展开更多
Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery fa...Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.展开更多
BACKGROUND:This study aimed to evaluate the discriminatory performance of 11 vital sign-based early warning scores(EWSs)and three shock indices in early sepsis prediction in the emergency department(ED).METHODS:We per...BACKGROUND:This study aimed to evaluate the discriminatory performance of 11 vital sign-based early warning scores(EWSs)and three shock indices in early sepsis prediction in the emergency department(ED).METHODS:We performed a retrospective study on consecutive adult patients with an infection over 3 months in a public ED in Hong Kong.The primary outcome was sepsis(Sepsis-3 definition)within 48 h of ED presentation.Using c-statistics and the DeLong test,we compared 11 EWSs,including the National Early Warning Score 2(NEWS2),Modified Early Warning Score,and Worthing Physiological Scoring System(WPS),etc.,and three shock indices(the shock index[SI],modified shock index[MSI],and diastolic shock index[DSI]),with Systemic Inflammatory Response Syndrome(SIRS)and quick Sequential Organ Failure Assessment(qSOFA)in predicting the primary outcome,intensive care unit admission,and mortality at different time points.RESULTS:We analyzed 601 patients,of whom 166(27.6%)developed sepsis.NEWS2 had the highest point estimate(area under the receiver operating characteristic curve[AUROC]0.75,95%CI 0.70-0.79)and was significantly better than SIRS,qSOFA,other EWSs and shock indices,except WPS,at predicting the primary outcome.However,the pooled sensitivity and specificity of NEWS2≥5 for the prediction of sepsis were 0.45(95%CI 0.37-0.52)and 0.88(95%CI 0.85-0.91),respectively.The discriminatory performance of all EWSs and shock indices declined when used to predict mortality at a more remote time point.CONCLUSION:NEWS2 compared favorably with other EWSs and shock indices in early sepsis prediction but its low sensitivity at the usual cut-off point requires further modification for sepsis screening.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the...The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.展开更多
To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r...The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.展开更多
The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accur...The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.展开更多
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel...Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.展开更多
Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing...Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.展开更多
基金Supported by the National Key R&DPlan Project(2022YFE0129900)National Natural Science Foundation of China(52074338).
文摘The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algorithm, together with the analysis on data and information of horizontal well fracturing in shale gas reservoirs, this paper presents a method for intelligent identification and real-time warning of diverse complex events in horizontal well fracturing. An identification model for "point" events in fracturing is established based on the Att-BiLSTM neural network, along with the broad learning system (BLS) and the BP neural network, and it realizes the intelligent identification of the start/end of fracturing, formation breakdown, instantaneous shut-in, and other events, with an accuracy of over 97%. An identification model for "phase" events in fracturing is established based on enhanced Unet++ network, and it realizes the intelligent identification of pump ball, pre-acid treatment, temporary plugging fracturing, sand plugging, and other events, with an error of less than 0.002. Moreover, a real-time prediction model for fracturing pressure is built based on the Att-BiLSTM neural network, and it realizes the real-time warning of diverse events in fracturing. The proposed method can provide an intelligent, efficient and accurate identification of events in fracturing to support the decision-making.
文摘As one of the provinces of highest economic growth in coastal China,Zhejiang Province is experiencing serious geological disasters during the past development of economy.The main kinds of geo-hazards include landslides,rock falls and debris-flows in Zhejiang Province,which are mainly induced by intensive rainfall during typhoon season or by long-term rainfall from May to June every year.Thus,
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
基金supported by the National Natural Science Foundation of China(U2033204,51976209)the Natural Science Foundation of Hefei(2022019)supported by Youth Innovative Promotion Association CAS(Y201768)。
文摘Early warning of thermal runaway(TR)of lithium-ion batteries(LIBs)is a significant challenge in current application scenarios.Timely and effective TR early warning technology is urgently required considering the current fire safety situation of LIBs.In this work,we report an early warning method of TR with online electrochemical impedance spectroscopy(EIS)monitoring,which overcomes the shortcomings of warning methods based on traditional signals such as temperature,gas,and pressure with obvious delay and high cost.With in-situ data acquisition through accelerating rate calorimeter(ARC)-EIS test,the crucial features of TR were extracted using the RReliefF algorithm.TR mechanisms corresponding to the features at specific frequencies were analyzed.Finally,a three-level warning strategy for single battery,series module,and parallel module was formulated,which can successfully send out an early warning signal ahead of the self-heating temperature of battery under thermal abuse condition.The technology can provide a reliable basis for the timely intervention of battery thermal management and fire protection systems and is expected to be applied to electric vehicles and energy storage devices to realize early warning and improve battery safety.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(No.20231120171032001,20231122125728001).
文摘Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelligent self-powered remote IoT fire warning system,by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films.The flexible films,prepared by a convenient solution mixing,display p-type characteristic with excellent high-temperature stability,flame retardancy and TE(power factor of 239.7±15.8μW m^(-1) K^(-2))performances.The comprehensive morphology and structural analyses shed light on the underlying mechanisms.And the assembled TE devices(TEDs)exhibit fast fire warning with adjustable warning threshold voltages(1–10 mV).Excitingly,an ultrafast fire warning response time of~0.1 s at 1 mV threshold voltage is achieved,rivaling many state-of-the-art systems.Furthermore,TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure.Finally,a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier,analogto-digital converter and Bluetooth module.By combining TE characteristics,high-temperature stability and flame retardancy with wireless IoT signal transmission,TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.
基金supported by the National Key R&D Program of China(2022YFB2404300)the National Natural Science Foundation of China(NSFC Nos.52177217 and 52106244)。
文摘Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.
基金supported by the Health and Medical Research Fund of the Food and Health Bureau of the Hong Kong Special Administrative Region(Project No.19201161)Seed Fund from the University of Hong Kong.
文摘BACKGROUND:This study aimed to evaluate the discriminatory performance of 11 vital sign-based early warning scores(EWSs)and three shock indices in early sepsis prediction in the emergency department(ED).METHODS:We performed a retrospective study on consecutive adult patients with an infection over 3 months in a public ED in Hong Kong.The primary outcome was sepsis(Sepsis-3 definition)within 48 h of ED presentation.Using c-statistics and the DeLong test,we compared 11 EWSs,including the National Early Warning Score 2(NEWS2),Modified Early Warning Score,and Worthing Physiological Scoring System(WPS),etc.,and three shock indices(the shock index[SI],modified shock index[MSI],and diastolic shock index[DSI]),with Systemic Inflammatory Response Syndrome(SIRS)and quick Sequential Organ Failure Assessment(qSOFA)in predicting the primary outcome,intensive care unit admission,and mortality at different time points.RESULTS:We analyzed 601 patients,of whom 166(27.6%)developed sepsis.NEWS2 had the highest point estimate(area under the receiver operating characteristic curve[AUROC]0.75,95%CI 0.70-0.79)and was significantly better than SIRS,qSOFA,other EWSs and shock indices,except WPS,at predicting the primary outcome.However,the pooled sensitivity and specificity of NEWS2≥5 for the prediction of sepsis were 0.45(95%CI 0.37-0.52)and 0.88(95%CI 0.85-0.91),respectively.The discriminatory performance of all EWSs and shock indices declined when used to predict mortality at a more remote time point.CONCLUSION:NEWS2 compared favorably with other EWSs and shock indices in early sepsis prediction but its low sensitivity at the usual cut-off point requires further modification for sepsis screening.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875031,52242507)Beijing Municipal Natural Science Foundation of China(Grant No.3212010)Beijing Municipal Youth Backbone Personal Project of China(Grant No.2017000020124 G018).
文摘The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金funded by Anhui Provincial Natural Science Foundation(No.2208085ME128)the Anhui University-Level Special Project of Anhui University of Science and Technology(No.XCZX2021-01)+1 种基金the Research and the Development Fund of the Institute of Environmental Friendly Materials and Occupational Health,Anhui University of Science and Technology(No.ALW2022YF06)Anhui Province New Era Education Quality Project(Graduate Education)(No.2022xscx073).
文摘The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.
文摘The global incidence of infectious diseases has increased in recent years,posing a significant threat to human health.Hospitals typically serve as frontline institutions for detecting infectious diseases.However,accurately identifying warning signals of infectious diseases in a timely manner,especially emerging infectious diseases,can be challenging.Consequently,there is a pressing need to integrate treatment and disease prevention data to conduct comprehensive analyses aimed at preventing and controlling infectious diseases within hospitals.This paper examines the role of medical data in the early identification of infectious diseases,explores early warning technologies for infectious disease recognition,and assesses monitoring and early warning mechanisms for infectious diseases.We propose that hospitals adopt novel multidimensional early warning technologies to mine and analyze medical data from various systems,in compliance with national strategies to integrate clinical treatment and disease prevention.Furthermore,hospitals should establish institution-specific,clinical-based early warning models for infectious diseases to actively monitor early signals and enhance preparedness for infectious disease prevention and control.
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03020002)the National Natural Science Foundation of China(Nos.12205085 and12125502)。
文摘Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.
基金National Natural Science Foundation of China under Grant No.52178114Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project No.2021-79。
文摘Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.