Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually app...Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually applied. Purpose: To compare the correction effects of the phased-array uniformity enhancement (PURE), a calibration-based image non-uniformity correction method, among three different software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Material and Methods: Hepatobiliary-phase images of a total of 120 patients who underwent Gd-EOB-DTPA-enhanced MR imaging on the same 3T scanner were analyzed retrospectively. Forty patients each were examined using three software versions (DV25, DV25.1, and DV26). The effects of PURE were compared by visual assessment, histogram analysis of liver signal intensity, evaluation of the spatial distribution of correction effects, and evaluation of quantitative indices of liver parenchymal enhancement. Results: The visual assessment indicated the highest uniformity of PURE-corrected images for DV26, followed by DV25 and DV25.1. Histogram analysis of corrected images demonstrated significantly larger variations in liver signal for DV25.1 than for the other two versions. Although PURE caused a relative increase in pixel values for central and lateral regions, such effects were weaker for DV25.1 than for the other two versions. In the evaluation of quantitative indices of liver parenchymal enhancement, the liver-to-muscle ratio (LMR) was significantly higher for the corrected images than for the uncorrected images, but the liver-to-spleen ratio (LSR) showed no significant differences. For corrected images, the LMR was significantly higher for DV25 and DV26 than for DV25.1, but the LSR showed no significant differences among the three versions. Conclusion: There were differences in the effects of PURE among the three software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Even if the non-uniformity correction method has the same brand name, correction effects may differ depending on the software version, and these differences may affect visual and quantitative evaluations.展开更多
Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin...Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.展开更多
In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This pa...In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.展开更多
The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated result...The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.展开更多
The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperat...The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperatures. This method can control the bias voltage of MOS transistors by memory and DAC to meet two restrictions about responsivity and offset before traditional two-point calibration is implemented. The simulation results seem that this non-uniformity correction can work at uniform substrate temperature with fluctuant range of 4K.展开更多
Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction....Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.展开更多
The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The...The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.展开更多
This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was...This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.展开更多
In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigat...In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigation satellite system(Galileo)have provided real-time satellite clock correction,which is updated at a high-frequency.However,the frequent updates pose the challenges of increasing the computational burden and compromising the timeliness of these correction parameters.To address this issue,an improved Real-Time Service(RTS)method is developed using an extrapolation algorithm and a linear model.The results indicate that a 1 h arc length of the satellite clock correction series is optimal for fitting a linear model of the RTS.With this approach,the 1 h extrapolation results for BDS-3 and Galileo are superior to 0.09 ns.Moreover,when these model coefficients are transmitted and updated at the intervals of 1,2,5,and 10 min,the corresponding PPP can converge at the centimeter-level.It is evident that these improved RTS methods outperform the current approach with high-frequency interval transmission,as they effectively mitigate the challenges associated with maintaining the timeliness of correction parameters.展开更多
The applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-ti...The applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-time led to the development of the Global Navigation Satellite System—Real-Time Network (GNSS-RTN). While there is numerous published information on the technical aspects of the GNSS-RTN technology, information on the best practices or guidelines in building, operating, and managing the GNSS-RTN networks is lacking in practice. To better understand the current practice in establishing and operating the GNSS-RTN systems, an online questionnaire survey was sent to the GNSS-RTN system owners/operators across the U.S. Additionally, a thorough review of available literature on business models and interviews with representatives of two major manufacturers/vendors of GNSS-RTN products and services were conducted. Study results revealed a great deal of inconsistency in current practices among states in the way the GNSS-RTN systems are built, operated, and managed. Aspects of the diversity in state practices involved the business models for the GNSS-RTN systems besides the technical attributes of the network and system products. The information gathered in this study is important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.展开更多
For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas...For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.展开更多
There are various applied electro-optical devices, which utilize light emitting didoe(LED) chip array for applications to displays and opto-electronic sensors. In those devices, it is the one of the critical technical...There are various applied electro-optical devices, which utilize light emitting didoe(LED) chip array for applications to displays and opto-electronic sensors. In those devices, it is the one of the critical technical issues to minimize uncertain fluctuations including optical power and optical density. Due to variation in operating environment of a device, those are not corrected precisely by controlling parameters based on simple relation between parameters and resultant abovementioned outputs.Therefore, there is essential need to correct outputs in real-time based on correction function generated from the consideration on various operation condition. In this article, we introduce an output correction method through reporting real-time image noise reduction in the application to electro-photography with LED print head. In the technology of LED print head, as differences in optical characteristics between each LED cause vertical image noise, it should be corrected in order to obtain images that are comparable or better in quality compared to those produced by the conventional laser scanning method. Even though it seems that the method used to obtain uniform light power from each LED can solve this problem, it does not work well for high-resolution printing. Therefore, a scan method involving correction by a printed and scanned pattern is introduced through this work. The scan method is composed of correction patterns to minimize printing noise by its shape, the correction algorithm to calculate the optimized value and the printing algorithm to control gray levels in real-time precisely. We believe that the developed correction method upgrades the printing quality of the LPH printer better than commercial printers. The developed correction method can also be applied to various application areas that use an array-type light source such as display systems and lighting systems.展开更多
Background:The single-molecular sequencing(SMS)is under rapid development and generating increasingly long and accurate sequences.De novo assembly of genomes from SMS sequences is a critical step for many genomic stud...Background:The single-molecular sequencing(SMS)is under rapid development and generating increasingly long and accurate sequences.De novo assembly of genomes from SMS sequences is a critical step for many genomic studies.To scale well with the developing trends of SMS,many de novo assemblers for SMS have been released.These assembly workflows can be categorized into two different kinds:the correction-and-assembly strategy and the assembly-and-correction strategy,both of which are gaining more and more attentions.Results:In this article we make a discussion on the characteristics of errors in SMS sequences・We then review the currently widely applied de novo assemblers for SMS sequences.We also describe computational methods relevant to de novo assembly,including the alignment methods and the error correction methods.Benchmarks are provided to analyze their performance on different datasets and to provide use guides on applying the computation methods.Conclusion:We make a detailed review on the latest development of de novo assembly and some relevant algorithms for SMS,including their rationales,solutions and results.Besides,we provide use guides on the algorithms based on their benchmark results.Finally we conclude the review by giving some developing trends of third generation sequencing(TGS).展开更多
文摘Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually applied. Purpose: To compare the correction effects of the phased-array uniformity enhancement (PURE), a calibration-based image non-uniformity correction method, among three different software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Material and Methods: Hepatobiliary-phase images of a total of 120 patients who underwent Gd-EOB-DTPA-enhanced MR imaging on the same 3T scanner were analyzed retrospectively. Forty patients each were examined using three software versions (DV25, DV25.1, and DV26). The effects of PURE were compared by visual assessment, histogram analysis of liver signal intensity, evaluation of the spatial distribution of correction effects, and evaluation of quantitative indices of liver parenchymal enhancement. Results: The visual assessment indicated the highest uniformity of PURE-corrected images for DV26, followed by DV25 and DV25.1. Histogram analysis of corrected images demonstrated significantly larger variations in liver signal for DV25.1 than for the other two versions. Although PURE caused a relative increase in pixel values for central and lateral regions, such effects were weaker for DV25.1 than for the other two versions. In the evaluation of quantitative indices of liver parenchymal enhancement, the liver-to-muscle ratio (LMR) was significantly higher for the corrected images than for the uncorrected images, but the liver-to-spleen ratio (LSR) showed no significant differences. For corrected images, the LMR was significantly higher for DV25 and DV26 than for DV25.1, but the LSR showed no significant differences among the three versions. Conclusion: There were differences in the effects of PURE among the three software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Even if the non-uniformity correction method has the same brand name, correction effects may differ depending on the software version, and these differences may affect visual and quantitative evaluations.
基金National Natural Science Foundation of China(41475060,41275067,41405060)
文摘Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.
基金Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.1105007002National Natural Science Foundation of China under Grant No.51378107 and No.51678147
文摘In real-time hybrid simulation(RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation(online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that:(1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and(2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.
基金Funded by the Special Found of the Ministry of Education for Doctor Station Subject(No.20115522110001)
文摘The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.
文摘The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperatures. This method can control the bias voltage of MOS transistors by memory and DAC to meet two restrictions about responsivity and offset before traditional two-point calibration is implemented. The simulation results seem that this non-uniformity correction can work at uniform substrate temperature with fluctuant range of 4K.
基金supported by the National Natural Science Foundation of China(No.62173281)the Natural Science Foundation of Sichuan Province(No.23ZDYF0734 and No.2023NSFSC1436)the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(No.18kftk03).
文摘Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.
基金Supported by the National Natural Science Foundation of China(10772029)
文摘The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.
文摘This article focuses on the performance analysis of both real-time and post-mission kinematic precise point positioning(PPP)in challenging marine environments.For this purpose,a real dynamic experiment lasting 6 h was carried out on a lake dam in?orum City of Turkey.While the kinematic test was continuing,the real-time PPP coordinates were obtained for each measurement epoch with a commercial real-time PPP(RT-PPP)service,namely the Trimble Center Point RTX.Then the post-mission PPP(PM-PPP)coordinates were calculated by using Multi-GNSS data and the Multi-GNSS Experiment(MGEX)precise products.The kinematic RT-PPP and PM-PPP results showed that the PPP coordinates were consistent with the relative solution at centimetre and decimetre level in horizontal and height components,respectively.This study implies that PPP technique is a powerful tool for highly accurate positioning in both real-time and post-mission modes,even for dynamic applications in harsh environments.
基金This research is supported by the National Natural Science Foundation of China(NSFC)(Nos.42174019 and 41974025)the Fundamental Research Funds for the Central Universities.
文摘In order to facilitate high-precision and real-time Precise Point Positioning(PPP),the International GNSS(Global Navigation Satellite System)Service(IGS),BDS-3(BeiDou-3 Navigation Satellite System),and Galileo navigation satellite system(Galileo)have provided real-time satellite clock correction,which is updated at a high-frequency.However,the frequent updates pose the challenges of increasing the computational burden and compromising the timeliness of these correction parameters.To address this issue,an improved Real-Time Service(RTS)method is developed using an extrapolation algorithm and a linear model.The results indicate that a 1 h arc length of the satellite clock correction series is optimal for fitting a linear model of the RTS.With this approach,the 1 h extrapolation results for BDS-3 and Galileo are superior to 0.09 ns.Moreover,when these model coefficients are transmitted and updated at the intervals of 1,2,5,and 10 min,the corresponding PPP can converge at the centimeter-level.It is evident that these improved RTS methods outperform the current approach with high-frequency interval transmission,as they effectively mitigate the challenges associated with maintaining the timeliness of correction parameters.
文摘The applications of geospatial technologies and positioning data embrace every sphere of modern-day science and industry. With technological advancement, the demands for highly accurate positioning services in real-time led to the development of the Global Navigation Satellite System—Real-Time Network (GNSS-RTN). While there is numerous published information on the technical aspects of the GNSS-RTN technology, information on the best practices or guidelines in building, operating, and managing the GNSS-RTN networks is lacking in practice. To better understand the current practice in establishing and operating the GNSS-RTN systems, an online questionnaire survey was sent to the GNSS-RTN system owners/operators across the U.S. Additionally, a thorough review of available literature on business models and interviews with representatives of two major manufacturers/vendors of GNSS-RTN products and services were conducted. Study results revealed a great deal of inconsistency in current practices among states in the way the GNSS-RTN systems are built, operated, and managed. Aspects of the diversity in state practices involved the business models for the GNSS-RTN systems besides the technical attributes of the network and system products. The information gathered in this study is important in helping state agencies make informed decisions as they build, expand or manage their own GNSS-RTN systems.
基金Supported by the National Natural Science Foundation of China(51174091,61364013,61164013)Earlier Research Project of the State Key Development Program for Basic Research of China(2014CB360502)
文摘For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government(Grant No.2015R1C1A1A01053888)the Yeungnam University Research Grant(Grant No.216A580022)
文摘There are various applied electro-optical devices, which utilize light emitting didoe(LED) chip array for applications to displays and opto-electronic sensors. In those devices, it is the one of the critical technical issues to minimize uncertain fluctuations including optical power and optical density. Due to variation in operating environment of a device, those are not corrected precisely by controlling parameters based on simple relation between parameters and resultant abovementioned outputs.Therefore, there is essential need to correct outputs in real-time based on correction function generated from the consideration on various operation condition. In this article, we introduce an output correction method through reporting real-time image noise reduction in the application to electro-photography with LED print head. In the technology of LED print head, as differences in optical characteristics between each LED cause vertical image noise, it should be corrected in order to obtain images that are comparable or better in quality compared to those produced by the conventional laser scanning method. Even though it seems that the method used to obtain uniform light power from each LED can solve this problem, it does not work well for high-resolution printing. Therefore, a scan method involving correction by a printed and scanned pattern is introduced through this work. The scan method is composed of correction patterns to minimize printing noise by its shape, the correction algorithm to calculate the optimized value and the printing algorithm to control gray levels in real-time precisely. We believe that the developed correction method upgrades the printing quality of the LPH printer better than commercial printers. The developed correction method can also be applied to various application areas that use an array-type light source such as display systems and lighting systems.
文摘Background:The single-molecular sequencing(SMS)is under rapid development and generating increasingly long and accurate sequences.De novo assembly of genomes from SMS sequences is a critical step for many genomic studies.To scale well with the developing trends of SMS,many de novo assemblers for SMS have been released.These assembly workflows can be categorized into two different kinds:the correction-and-assembly strategy and the assembly-and-correction strategy,both of which are gaining more and more attentions.Results:In this article we make a discussion on the characteristics of errors in SMS sequences・We then review the currently widely applied de novo assemblers for SMS sequences.We also describe computational methods relevant to de novo assembly,including the alignment methods and the error correction methods.Benchmarks are provided to analyze their performance on different datasets and to provide use guides on applying the computation methods.Conclusion:We make a detailed review on the latest development of de novo assembly and some relevant algorithms for SMS,including their rationales,solutions and results.Besides,we provide use guides on the algorithms based on their benchmark results.Finally we conclude the review by giving some developing trends of third generation sequencing(TGS).