A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutua...A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.展开更多
We consider the quantum mechanical SU(2) transformation e^2λJzJ±e^-2λJz = e^±2λJ±as if the meaning of squeezing with e^±2λ being squeezing parameter. By studying SU(2) operators (J±,...We consider the quantum mechanical SU(2) transformation e^2λJzJ±e^-2λJz = e^±2λJ±as if the meaning of squeezing with e^±2λ being squeezing parameter. By studying SU(2) operators (J±, Jz) from the point of view of squeezing we find that (J±,Jz) can also be realized in terms of 3-mode bosonic operators. Employing this realization, we find the natural representation (the eigenvectors of J+ or J-) of the 3-mode squeezing operator e^2λJz. The idea of considering quantum SU(2) transformation as if squeezing is liable for us to obtain the new bosonic operator realization of SU(2) and new squeezing operators.展开更多
A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determini...A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.展开更多
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational m...The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.展开更多
It is an urgent and important economic work in the moment and the next period for China to realize the transformation of economic growth mode. Relatively, there must be certain basic conditions. This article makes ela...It is an urgent and important economic work in the moment and the next period for China to realize the transformation of economic growth mode. Relatively, there must be certain basic conditions. This article makes elaboration of the basic conditions, which accelerate the change of Shaanxi's economic growth mode from government angle, and proposes countermeasures for it, according to Shaanxi's situation and the requirement of scientific development concept, in order to provide basis for the government's economic growth transformation.展开更多
A series of mixed mode tests were carried out on 18-8 stainless steel in boiling 42% MgCl_2 solution.The results show that for any K_Ⅱ/K_Ⅰ ratio,the SCC direction coin- cides well with the crack tip maximum normal s...A series of mixed mode tests were carried out on 18-8 stainless steel in boiling 42% MgCl_2 solution.The results show that for any K_Ⅱ/K_Ⅰ ratio,the SCC direction coin- cides well with the crack tip maximum normal stress plane,while the SCC resistance of the material reduces as the ratio of K_Ⅱ/K_Ⅰ increases.The experimental results were discussed in the light of anode dissolving mechanism and the effect of mixed mode loading on crack tip stress and strain.It is concluded that for fracture analysis if mixed mode cracks were simply taken into account as mode Ⅰ cracks,and only mode Ⅰ testing results as mode Ⅰ fracture criter- ion were employed,it may not be safe.展开更多
A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices i...A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.展开更多
A theoretical analysis of the lateral resonances in 1-3 piezocomposites with poling initial stress is conducted using the Bloch wave theory. Based on the linear piezoelectricity theory, theoretical formulations that i...A theoretical analysis of the lateral resonances in 1-3 piezocomposites with poling initial stress is conducted using the Bloch wave theory. Based on the linear piezoelectricity theory, theoretical formulations that include initial stress for the propagation of acoustic plane waves are made. Numerical calculations are performed to study the effects of the initial stress on the lateral mode frequencies and the stop band. It is found that lateral mode frequencies increase with the piezoelectricity of the piezocomposites, but decrease with the poling initial stress. The influence of the initial shear stress on the lateral mode frequencies is minimal, and can thus be neglected.展开更多
文摘A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175113 and 11275123)the Key Project of Natural Science Fund of Anhui Province,China(Grant No.KJ2013A261)
文摘We consider the quantum mechanical SU(2) transformation e^2λJzJ±e^-2λJz = e^±2λJ±as if the meaning of squeezing with e^±2λ being squeezing parameter. By studying SU(2) operators (J±, Jz) from the point of view of squeezing we find that (J±,Jz) can also be realized in terms of 3-mode bosonic operators. Employing this realization, we find the natural representation (the eigenvectors of J+ or J-) of the 3-mode squeezing operator e^2λJz. The idea of considering quantum SU(2) transformation as if squeezing is liable for us to obtain the new bosonic operator realization of SU(2) and new squeezing operators.
基金the State Key Development Program for Basic Research of China (No. G2000048005) the SINOPEC (No.X503023).
文摘A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
基金supported in part by the National Basic Research Program of China (No. JCKY2016203B032)
文摘The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.
文摘It is an urgent and important economic work in the moment and the next period for China to realize the transformation of economic growth mode. Relatively, there must be certain basic conditions. This article makes elaboration of the basic conditions, which accelerate the change of Shaanxi's economic growth mode from government angle, and proposes countermeasures for it, according to Shaanxi's situation and the requirement of scientific development concept, in order to provide basis for the government's economic growth transformation.
文摘A series of mixed mode tests were carried out on 18-8 stainless steel in boiling 42% MgCl_2 solution.The results show that for any K_Ⅱ/K_Ⅰ ratio,the SCC direction coin- cides well with the crack tip maximum normal stress plane,while the SCC resistance of the material reduces as the ratio of K_Ⅱ/K_Ⅰ increases.The experimental results were discussed in the light of anode dissolving mechanism and the effect of mixed mode loading on crack tip stress and strain.It is concluded that for fracture analysis if mixed mode cracks were simply taken into account as mode Ⅰ cracks,and only mode Ⅰ testing results as mode Ⅰ fracture criter- ion were employed,it may not be safe.
文摘A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.
基金Project supported by the National Natural Science Foundation of China(Nos.90205030 and 10472088)
文摘A theoretical analysis of the lateral resonances in 1-3 piezocomposites with poling initial stress is conducted using the Bloch wave theory. Based on the linear piezoelectricity theory, theoretical formulations that include initial stress for the propagation of acoustic plane waves are made. Numerical calculations are performed to study the effects of the initial stress on the lateral mode frequencies and the stop band. It is found that lateral mode frequencies increase with the piezoelectricity of the piezocomposites, but decrease with the poling initial stress. The influence of the initial shear stress on the lateral mode frequencies is minimal, and can thus be neglected.