In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi...In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.展开更多
The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the settin...The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
Although neural methods have been comprehensively applied in different fields,symbolic based logic reasoning is still the main choice for numerous applications based on knowledge graphs.To enhance the efficiency of kn...Although neural methods have been comprehensively applied in different fields,symbolic based logic reasoning is still the main choice for numerous applications based on knowledge graphs.To enhance the efficiency of knowledge graph reasoning,researchers studied how to design parallelalgorithms for reasoning,and take advantage of high-performance architectures,like neural networks.Although parallel algorithms and architectures improve the performance of reasoning to some degree,the task of reasoning is essentially bounded by its computational complexity,i.e.,the PTiMe-Completeness or higher complexities.This means that the task of reasoning is not parallelly tractable.In this work,we investigate the parallel tractability of knowledge graph reasoning from the perspective of parallel complexity.We concentrate on knowledge graphs that are Datalog rewritable.We aim to capture the parallelly tractable classes of knowledge graphs,for which,the task of reasoning falls in the NC complexity.To this end,we employ the computational model of Boolean circuit to formalize knowledge graph reasoning and further obtain all the theoretical results.We then use the results to analyze DHL(Description Horn Logic),a fragment of description logic.We give the properties that ensure the parallel tractability of DHL reasoning.One can utilize our results to check the parallel tractability of real knowledge graphs.In addition,the Boolean circuits proposed in this paper can also be used to construct neural networks to perform knowledge graph reasoning.展开更多
Objective To identify and reduce the gap between China’s drug GMP inspection and pharmaceutical inspection co-operation scheme(PIC/S)audit checklist,find out the key improvement items,and revise them pertinently,whic...Objective To identify and reduce the gap between China’s drug GMP inspection and pharmaceutical inspection co-operation scheme(PIC/S)audit checklist,find out the key improvement items,and revise them pertinently,which will promote the process of China joining PIC/S.Methods The general situation of PIC/S organization and audit checklist were introduced first,and then the accession of several countries that joined the organization was analyzed.Meanwhile,the process of China’s participation in PIC/S was sorted out.After referring to the contents of PIC/S audit checklist,the problems of GMP inspection system in China were studied.Results and Conclusion There are still many problems in GMP inspection in China.Some suggestions are put forward for improvement and change,which can provide reference for the development of drug inspection agencies at all levels in China.展开更多
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is...Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.展开更多
Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The...Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
The model for protection of personal information dis-closed according to the law has changed from indirect protection to direct protection.The indirect protection model for traditional repu-tation rights and privacy r...The model for protection of personal information dis-closed according to the law has changed from indirect protection to direct protection.The indirect protection model for traditional repu-tation rights and privacy rights was not enough to meet the practical needs of governance.However;due to the ambiguity in the application of the“reasonable”processing requirements,the direct protection model centered on Article 27 of the Personal Information Protection Law also is not enough to effectively respond to practical disputes.The essence of the problem is to resolve the tension between informa-tion circulation and risk control and reshape the legal order for the protection of personal information disclosed according to the law.The determination of“reasonable”should be centered on the scenario theory and holism interpretation and carried out by using the interpre-tation technique of the dynamic system under Article 998 of the Civil Code.With the support of scenario-based discussions and comparative propositions,the crawling and tag extraction of personal information.disclosed according to the law should be considered as reasonable processing;profiling and automated decision-making should not be covered in the scope of reasonable processing,in principle;for behav-iors such as correlation analysis,elements like information subject,identifiability and sensitivity should be comprehensively considered to draw open and inclusive conclusions in individual cases.展开更多
This paper determines a delta inference operator C based on the notion of reasonable consequence of Adams′ system and studies its properties. It shows another approach to study inductive and probabilistic reasoning.
A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. ...A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.展开更多
The possibility and rationality of introducing an bid-winning estimate based on a reasonable low price into construction bidding mode with bill of quantities were analyzed by setting up a model for bidding and tenderi...The possibility and rationality of introducing an bid-winning estimate based on a reasonable low price into construction bidding mode with bill of quantities were analyzed by setting up a model for bidding and tendering, and the functions of the estimate of reasonable low price in the bidding were revealed. On this basis, a new bidding mode of the project with bill of quantities was pro- posed. The application of the new mode will be advantageous to the promotion of the bill of quantities in China.展开更多
In September 1994 the University of Twente, the Netherlands, and Zhejiang University, China, decided to cooperate in the field of science, education and management. After several visits of delegations from both sides ...In September 1994 the University of Twente, the Netherlands, and Zhejiang University, China, decided to cooperate in the field of science, education and management. After several visits of delegations from both sides it was considered worthwhile to explore further opportunities for mutual cooperation. The directors of international cooperation on each side jointly commissioned a project to investigate the potential in a systematic way and to establish further contacts where appropriate. This paper reports on the results of the research cum matching project. To reveal promising matches between multiple departments of both academic institutions a matching model for uni-versities was designed. The study was carried out along two parallel lines. In the research line the theoretical framework was developed into a model for international university co-operation. Moreover, an analysis was carried out on internal, external and cultural aspects resulting in a set of thirty four influencing factors. In the matching line a total of seventy interviews were held in order to identify promising matches between units at both universities. This line resulted in eleven promising matches for further co-operation. The novel model appeared useful in analyzing the variety of factors and in developing matches between both univer-sities. In the further implementation of the model the issues of 搇evel of co-operation?and 搕op-down versus bottom-up?need to be addressed in more detail.展开更多
In this thesis, the interal relations between about shear looking, zero energy mode and patch test are studied, and a reasonable method provided for building general element of thick and thin plate with effectual and ...In this thesis, the interal relations between about shear looking, zero energy mode and patch test are studied, and a reasonable method provided for building general element of thick and thin plate with effectual and realiable numerical solution.展开更多
基金supported by Key Laboratory of Information System Requirement,No.LHZZ202202Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023D01C55)Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2023P127).
文摘In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.
文摘The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China under grant number 22KJB520003.The project name is"Research on Representation and Reasoning of Knowledge Graphs based on Semantic Mapping".
文摘Although neural methods have been comprehensively applied in different fields,symbolic based logic reasoning is still the main choice for numerous applications based on knowledge graphs.To enhance the efficiency of knowledge graph reasoning,researchers studied how to design parallelalgorithms for reasoning,and take advantage of high-performance architectures,like neural networks.Although parallel algorithms and architectures improve the performance of reasoning to some degree,the task of reasoning is essentially bounded by its computational complexity,i.e.,the PTiMe-Completeness or higher complexities.This means that the task of reasoning is not parallelly tractable.In this work,we investigate the parallel tractability of knowledge graph reasoning from the perspective of parallel complexity.We concentrate on knowledge graphs that are Datalog rewritable.We aim to capture the parallelly tractable classes of knowledge graphs,for which,the task of reasoning falls in the NC complexity.To this end,we employ the computational model of Boolean circuit to formalize knowledge graph reasoning and further obtain all the theoretical results.We then use the results to analyze DHL(Description Horn Logic),a fragment of description logic.We give the properties that ensure the parallel tractability of DHL reasoning.One can utilize our results to check the parallel tractability of real knowledge graphs.In addition,the Boolean circuits proposed in this paper can also be used to construct neural networks to perform knowledge graph reasoning.
文摘Objective To identify and reduce the gap between China’s drug GMP inspection and pharmaceutical inspection co-operation scheme(PIC/S)audit checklist,find out the key improvement items,and revise them pertinently,which will promote the process of China joining PIC/S.Methods The general situation of PIC/S organization and audit checklist were introduced first,and then the accession of several countries that joined the organization was analyzed.Meanwhile,the process of China’s participation in PIC/S was sorted out.After referring to the contents of PIC/S audit checklist,the problems of GMP inspection system in China were studied.Results and Conclusion There are still many problems in GMP inspection in China.Some suggestions are put forward for improvement and change,which can provide reference for the development of drug inspection agencies at all levels in China.
文摘Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.
文摘Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
文摘The model for protection of personal information dis-closed according to the law has changed from indirect protection to direct protection.The indirect protection model for traditional repu-tation rights and privacy rights was not enough to meet the practical needs of governance.However;due to the ambiguity in the application of the“reasonable”processing requirements,the direct protection model centered on Article 27 of the Personal Information Protection Law also is not enough to effectively respond to practical disputes.The essence of the problem is to resolve the tension between informa-tion circulation and risk control and reshape the legal order for the protection of personal information disclosed according to the law.The determination of“reasonable”should be centered on the scenario theory and holism interpretation and carried out by using the interpre-tation technique of the dynamic system under Article 998 of the Civil Code.With the support of scenario-based discussions and comparative propositions,the crawling and tag extraction of personal information.disclosed according to the law should be considered as reasonable processing;profiling and automated decision-making should not be covered in the scope of reasonable processing,in principle;for behav-iors such as correlation analysis,elements like information subject,identifiability and sensitivity should be comprehensively considered to draw open and inclusive conclusions in individual cases.
文摘This paper determines a delta inference operator C based on the notion of reasonable consequence of Adams′ system and studies its properties. It shows another approach to study inductive and probabilistic reasoning.
基金Project(20133204120015) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003) supported by the Natural Science Foundation of the Higher Education Institution of Jiangsu Province,China
文摘A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.
文摘The possibility and rationality of introducing an bid-winning estimate based on a reasonable low price into construction bidding mode with bill of quantities were analyzed by setting up a model for bidding and tendering, and the functions of the estimate of reasonable low price in the bidding were revealed. On this basis, a new bidding mode of the project with bill of quantities was pro- posed. The application of the new mode will be advantageous to the promotion of the bill of quantities in China.
文摘In September 1994 the University of Twente, the Netherlands, and Zhejiang University, China, decided to cooperate in the field of science, education and management. After several visits of delegations from both sides it was considered worthwhile to explore further opportunities for mutual cooperation. The directors of international cooperation on each side jointly commissioned a project to investigate the potential in a systematic way and to establish further contacts where appropriate. This paper reports on the results of the research cum matching project. To reveal promising matches between multiple departments of both academic institutions a matching model for uni-versities was designed. The study was carried out along two parallel lines. In the research line the theoretical framework was developed into a model for international university co-operation. Moreover, an analysis was carried out on internal, external and cultural aspects resulting in a set of thirty four influencing factors. In the matching line a total of seventy interviews were held in order to identify promising matches between units at both universities. This line resulted in eleven promising matches for further co-operation. The novel model appeared useful in analyzing the variety of factors and in developing matches between both univer-sities. In the further implementation of the model the issues of 搇evel of co-operation?and 搕op-down versus bottom-up?need to be addressed in more detail.
文摘In this thesis, the interal relations between about shear looking, zero energy mode and patch test are studied, and a reasonable method provided for building general element of thick and thin plate with effectual and realiable numerical solution.