Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultras...Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not.展开更多
This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern(Cine) submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including fo...This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern(Cine) submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble(calcschist) were selected and examined.Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L-and N-type Schmidt hammers were applied in the directions perpendicular(anisotropy angle of 0°) and parallel(anisotropy angle of 90) to the foliation on selected blocks of phyllite, schist, gneiss and marble(calcschist). The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble(calcschist) have higher rebound values and strengths, and they are classified as strong-very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation,discontinuities, water content, weathering degree and thickness of foliated structure.展开更多
基金Funded by National Natural Science Foundation of China(Nos.51878350,11832013,52078250)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0236)。
文摘Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not.
文摘This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern(Cine) submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble(calcschist) were selected and examined.Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L-and N-type Schmidt hammers were applied in the directions perpendicular(anisotropy angle of 0°) and parallel(anisotropy angle of 90) to the foliation on selected blocks of phyllite, schist, gneiss and marble(calcschist). The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble(calcschist) have higher rebound values and strengths, and they are classified as strong-very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation,discontinuities, water content, weathering degree and thickness of foliated structure.