This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative contro...This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.展开更多
The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system x j+1|t =...The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system x j+1|t =f(x j|t , u j|t ) by using the Lyapunov direct method combining with receding horizon control technique, and presented a new condition to guarantee the practical stabilization of the systems. With the proposed results, one can design the optimal controllers easily to practically stabilize the predictive control systems.展开更多
This paper investigates the scheduling strategy of schedulable load in home energy management system(HEMS)under uncertain environment by proposing a distributionally robust optimization(DRO)method based on receding ho...This paper investigates the scheduling strategy of schedulable load in home energy management system(HEMS)under uncertain environment by proposing a distributionally robust optimization(DRO)method based on receding horizon optimization(RHO-DRO).First,the optimization model of HEMS,which contains uncertain variable outdoor temperature and hot water demand,is established and the scheduling problem is developed into a mixed integer linear programming(MILP)by using the DRO method based on the ambiguity sets of the probability distribution of uncertain variables.Combined with RHO,the MILP is solved in a rolling fashion using the latest update data related to uncertain variables.The simulation results demonstrate that the scheduling results are robust under uncertain environment while satisfying all operating constraints with little violation of user thermal comfort.Furthermore,compared with the robust optimization(RO)method,the RHO-DRO method proposed in this paper has a lower conservation and can save more electricity for users.展开更多
The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against ...The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
针对含有随机噪声的模型未知线性时不变(LTI,linear time invariant)系统模型建立过程复杂且控制律难以得到的问题,提出一种基于数据驱动的预测控制方法;基于系统行为学理论和平衡子系统辨识方法,仅利用测量得到的系统数据构建被控系统...针对含有随机噪声的模型未知线性时不变(LTI,linear time invariant)系统模型建立过程复杂且控制律难以得到的问题,提出一种基于数据驱动的预测控制方法;基于系统行为学理论和平衡子系统辨识方法,仅利用测量得到的系统数据构建被控系统的非参数模型,将其和预测控制理论相结合设计出基于数据驱动的预测控制器,对于系统测量数据中存在的有界加性高斯噪声,通过引入数据的松弛变量和L2正则项来降低噪声扰动的影响,采用滚动时域优化策略计算最优控制序列并将其作用于被控系统,实现了系统对设定值的轨迹跟踪;将所提控制策略应用于四容水箱系统,仿真结果表明所提方法能实现四容水箱系统的液位跟踪控制,且与同样基于数据驱动的子空间预测控制方案相比,所提方法具有更好的动态性能,且该策略在抗噪声扰动方面有明显优势,具有更强的鲁棒性。展开更多
Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematic...Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.展开更多
基金support from the National Natural Science Foundation of China(No.61773395)。
文摘This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.
文摘The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system x j+1|t =f(x j|t , u j|t ) by using the Lyapunov direct method combining with receding horizon control technique, and presented a new condition to guarantee the practical stabilization of the systems. With the proposed results, one can design the optimal controllers easily to practically stabilize the predictive control systems.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0901102).
文摘This paper investigates the scheduling strategy of schedulable load in home energy management system(HEMS)under uncertain environment by proposing a distributionally robust optimization(DRO)method based on receding horizon optimization(RHO-DRO).First,the optimization model of HEMS,which contains uncertain variable outdoor temperature and hot water demand,is established and the scheduling problem is developed into a mixed integer linear programming(MILP)by using the DRO method based on the ambiguity sets of the probability distribution of uncertain variables.Combined with RHO,the MILP is solved in a rolling fashion using the latest update data related to uncertain variables.The simulation results demonstrate that the scheduling results are robust under uncertain environment while satisfying all operating constraints with little violation of user thermal comfort.Furthermore,compared with the robust optimization(RO)method,the RHO-DRO method proposed in this paper has a lower conservation and can save more electricity for users.
基金co-supported by the National Natural Science Foundation of China(Nos. 61273349 and 61573043)
文摘The paper presents a new three-dimensional (3D) cooperative guidance approach by the receding horizon control (RHC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed RHC scheme is developed, in which each interceptor missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solution of the local FHOCP is obtained by the constrained particle swarm optimization (PSO) method that is integrated into the distributed RHC framework with enhanced equality and inequality constraints. The numerical simulations show that the proposed guidance approach is feasible to implement the cooperative engagement with satisfied accuracy of target capture. Finally, the computation efficiency of the distributed RHC scheme is discussed in consideration of the PSO parameters, control update period and prediction horizon. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
文摘针对含有随机噪声的模型未知线性时不变(LTI,linear time invariant)系统模型建立过程复杂且控制律难以得到的问题,提出一种基于数据驱动的预测控制方法;基于系统行为学理论和平衡子系统辨识方法,仅利用测量得到的系统数据构建被控系统的非参数模型,将其和预测控制理论相结合设计出基于数据驱动的预测控制器,对于系统测量数据中存在的有界加性高斯噪声,通过引入数据的松弛变量和L2正则项来降低噪声扰动的影响,采用滚动时域优化策略计算最优控制序列并将其作用于被控系统,实现了系统对设定值的轨迹跟踪;将所提控制策略应用于四容水箱系统,仿真结果表明所提方法能实现四容水箱系统的液位跟踪控制,且与同样基于数据驱动的子空间预测控制方案相比,所提方法具有更好的动态性能,且该策略在抗噪声扰动方面有明显优势,具有更强的鲁棒性。
基金supported by the National Natural Science Foundation of China (Grant Nos. 60975072 and 60604009)Aeronautical Science Foundation of China (Grant No. 2008ZC01006)+4 种基金Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)the Fundamental Research Funds for the Central Universities of China (Grant No. YWF-10-01-A18)Beijing NOVA Program Foundation (Grant No. 2007A017)open Fund of the State Key Laboratory of Virtual Reality Technology and SystemsOpen Fund of the Provincial Key Laboratory for Information Processing Technology, Suzhou University, China (Grant No. KJS1020)
文摘Multiple unmanned air vehicles(UAVs)/unmanned ground vehicles(UGVs) heterogeneous cooperation provides a new breakthrough for the effective application of UAV and UGV.On the basis of introduction of UAV/UGV mathematical model,the characteristics of heterogeneous flocking is analyzed in detail.Two key issues are considered in multi-UGV subgroups,which are Reynolds Rule and Virtual Leader(VL).Receding Horizon Control(RHC) with Particle Swarm Optimization(PSO) is proposed for multiple UGVs flocking,and velocity vector control approach is adopted for multiple UAVs flocking.Then,multiple UAVs and UGVs heterogeneous tracking can be achieved by these two approaches.The feasibility and effectiveness of our proposed method are verified by comparative experiments with artificial potential field method.