The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation me...The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation method on pipeline interference voltage under harmonic induction is presented.The results show that the Carson integral formula is more accurate in calculating the mutual impedance at higher frequencies.Then,an integrated train-network-pipeline model is established to estimate the influences of harmonic distortion and resonance on an MP.It is revealed that the higher the harmonic cur-rent distortion rate of the traction load,the larger the interference voltage on an MP.Particularly,the interference voltage is amplified up to 7 times when the TPSS resonates,which is worthy of attention.In addition,the parameters that affect the variation and sensitivity of the interference voltage are studied,namely,the pipeline coating material,locomotive position,and soil resistivity,indicating that soil resistivity and 3PE(3-layer polyethylene)anticorrosive coating are more sensitive to harmonic induction.Field test results show that the harmonic distortion can make the interference voltage more serious,and the protective measures are optimized.展开更多
We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings...We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.展开更多
Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recogni...Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures.展开更多
We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled ^85Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through qua...We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled ^85Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters.展开更多
A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and...A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and therefore reduce the effect of the interference on detection limit.展开更多
Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measureme...Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measurement accuracy.Moreover,this problem is often ignored by researchers.This paper investigated the origin of ground coupling interference in electric field sensors and its impact on measurement accuracy.A miniature undistorted electric field sensor with wireless transmission was compared with existing D-dot,microelectromechanical systems(MEMS),and optical sensors.The results indicate that MEMS and D-dot exhibit diminished accuracy in measuring electric fields under uniform conditions,owing to interference from ground wires.In the case of transmission lines with non-uniform conditions,the wireless sensor exhibited a measurement error of 5%,whereas the optical sensor showed an error rate of approximately 8%.However,the D-dot sensor displayed a measurement error exceeding 50%,whereas the MEMS sensor yielded an error as high as 150%.This means that the wireless sensor isolates the ground-coupled interference signal and realizes the distortion-free measurement of the electric field.The wireless sensors will find extensive applications in new power systems for intelligent equipment status perception,fault warning,and other scenarios.展开更多
We carry out an ultra-low-field nuclear magnetic resonance (NMR) experiment based on high-T c superconducting quantum interference devices (SQUIDs). The measurement field is in a micro-tesla range (~10 μT-100 ...We carry out an ultra-low-field nuclear magnetic resonance (NMR) experiment based on high-T c superconducting quantum interference devices (SQUIDs). The measurement field is in a micro-tesla range (~10 μT-100 μT) and the experiment is conducted in a home-made magnetically-shielded-room (MSR). The measurements are performed by the indirect coupling method in which the signal of nuclei precession is indirectly coupled to the SQUID through a tuned copper coil transformer. In such an arrangement, the interferences of applied measurement and polarization field to the SQUID sensor are avoided and the performance of the SQUID is not destroyed. In order to compare the detection sensitivity obtained by using the SQUID with that achieved using a conventional low-noise-amplifier, we perform the measurements using a commercial room temperature amplifier. The results show that in a wide frequency range (~1 kHz-10 kHz) the measurements with the SQUID sensor exhibit a higher signal-to-noise ratio. Further, we discuss the dependence of NMR peak magnitude on measurement frequency. We attribute the reduction of the peak magnitude at high frequency to the increased field inhomogeneity as the measurement field increases. This is verified by compensating the field gradient using three sets of gradient coils.展开更多
Intracavity tunneling induced transparency in asymmetric double-quantum wells embedded in a microcavity in the ultrastrong-coupling regime is investigated by the input-output theory developed by Ciuti and Carusotto. I...Intracavity tunneling induced transparency in asymmetric double-quantum wells embedded in a microcavity in the ultrastrong-coupling regime is investigated by the input-output theory developed by Ciuti and Carusotto. In this system a narrow spectra can be realized under anti-resonant terms of the external dissipation. Fano-interference asymmetric line profile is found in the absorption spectra.展开更多
An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, ...An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%-111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.展开更多
In the determination of trace yttrium (Y) in an ytterbium (Yb) matrix byinductively coupled plasma atomic emission spectrometry (ICP-AES), the most prominent line ofyttrium, Y 371.030 nm line, suffers from strong inte...In the determination of trace yttrium (Y) in an ytterbium (Yb) matrix byinductively coupled plasma atomic emission spectrometry (ICP-AES), the most prominent line ofyttrium, Y 371.030 nm line, suffers from strong interference due to an emission line of ytterbium.In mis work, a method based on wavelet transform was proposed for the spectral interferencecorrection. Haar wavelet was selected as the mother wavelet. The discrete detail after the thirddecomposition, D3, was chosen for quantitative analysis based on the consideration of bothseparation degree and peak height. The linear correlation coefficient between the height of the leftpositive peak in D3 and the concentration of Y was calculated to be 0.9926. Six synthetic sampleswere analyzed, and the recovery for yttrium varied from 96.3 percent to 110.0 percent. The amountsof yttrium in three ytterbium metal samples were determined by the proposed approach with an averagerelative standard deviation (RSD) of 2.5 percent, and the detection limit for yttrium was 0.016percent. This novel correction technique is fast and convenient, since neither complicated modelassumption nor time-consuming iteration is required. Furthermore, it is not affected by thewavelength drift inherent in monochromators that will severely reduce the accuracy of resultsobtained by some chemometric methods.展开更多
The determination of trace impurities in high purity zinc oxide by high resolution inductively coupled plasma mass spectrometry ( HR-ICP-MS ) was investigated. To overcome some poteutially problematic spectral iuter...The determination of trace impurities in high purity zinc oxide by high resolution inductively coupled plasma mass spectrometry ( HR-ICP-MS ) was investigated. To overcome some poteutially problematic spectral iuterference, measurements were acquired in both middle and high resolution modes. The matrix effects due to the presence of excess HCl and zinc were evaluated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits ranged from 0.02μg/ g to 6 μg/ g depending on the elements. The experimental resalts for the determination of Na, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Mo, Cd, Sb and Pb in several high purity zinc oxide powders were presented.展开更多
An analytical method, using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) for rapid simultaneous determination of Be, Na, Mg, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, As, Sn, Sb, Pb and Bi in e...An analytical method, using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) for rapid simultaneous determination of Be, Na, Mg, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, As, Sn, Sb, Pb and Bi in electrolytic manganese metal, was described. At the beginning, the samples were decomposed by HNO3 and H2504, and then analyzed by SF-ICP-MS. Most of the spectral interferences could be avoided by measuring in different mass resolution modes. The matrix effects due to the excess of sulfuric acid and Mn were evaluated. Correction of matrix effects was conducted by using the internal standard elements. The optimum condition for the determination was investigated and discussed. The detection limit is in the range of 0.001-0.169 gg/L. The current method is applied to the determination of trace impurities in electrolytic manganese metal. And experiments show that good results can be obtained much faster, more accurately and conveniently by current method.展开更多
Trace elements were determined in high purity gold by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Sample were decomposed by aqua regia. To overcome some potentially problematic spectra/...Trace elements were determined in high purity gold by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Sample were decomposed by aqua regia. To overcome some potentially problematic spectra/ interference, measurements were acquired in both medium and high resolution modes. The matrix effects due to the presence of excessive HCl and Au were evaluated. The optimum conditions for the determination was tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits range from 0.01ug/g to 0.28ug/g depending on the elements. The method is accurate, quick and convenient. It has been applied to the determination of trace elements in high purity gold with satisfactory results.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51877182).
文摘The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation method on pipeline interference voltage under harmonic induction is presented.The results show that the Carson integral formula is more accurate in calculating the mutual impedance at higher frequencies.Then,an integrated train-network-pipeline model is established to estimate the influences of harmonic distortion and resonance on an MP.It is revealed that the higher the harmonic cur-rent distortion rate of the traction load,the larger the interference voltage on an MP.Particularly,the interference voltage is amplified up to 7 times when the TPSS resonates,which is worthy of attention.In addition,the parameters that affect the variation and sensitivity of the interference voltage are studied,namely,the pipeline coating material,locomotive position,and soil resistivity,indicating that soil resistivity and 3PE(3-layer polyethylene)anticorrosive coating are more sensitive to harmonic induction.Field test results show that the harmonic distortion can make the interference voltage more serious,and the protective measures are optimized.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB643903 and 2013CB932904)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+1 种基金the National Natural Science Foundation of China(Grant Nos.61435012,61274013,61306088,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)
文摘We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.
基金supported by the National Natural Science Foundation of China(No.52174045)。
文摘Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures.
基金Supported by the National Basic Research Program of China under Grant No 2012CB922101the National Natural Science Foundation of China under Grant No 11404375supported by the National Science Foundation of USA under Grant No 1205565
文摘We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled ^85Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters.
文摘A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and therefore reduce the effect of the interference on detection limit.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3206800in part by the National Natural Science Foundation of China under Grant 52125703.
文摘Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measurement accuracy.Moreover,this problem is often ignored by researchers.This paper investigated the origin of ground coupling interference in electric field sensors and its impact on measurement accuracy.A miniature undistorted electric field sensor with wireless transmission was compared with existing D-dot,microelectromechanical systems(MEMS),and optical sensors.The results indicate that MEMS and D-dot exhibit diminished accuracy in measuring electric fields under uniform conditions,owing to interference from ground wires.In the case of transmission lines with non-uniform conditions,the wireless sensor exhibited a measurement error of 5%,whereas the optical sensor showed an error rate of approximately 8%.However,the D-dot sensor displayed a measurement error exceeding 50%,whereas the MEMS sensor yielded an error as high as 150%.This means that the wireless sensor isolates the ground-coupled interference signal and realizes the distortion-free measurement of the electric field.The wireless sensors will find extensive applications in new power systems for intelligent equipment status perception,fault warning,and other scenarios.
基金Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2011CBA00106 and 2009CB929102)the National Natural Science Foundation of China (Grant Nos. 11104333, 11161130519, and 10974243)
文摘We carry out an ultra-low-field nuclear magnetic resonance (NMR) experiment based on high-T c superconducting quantum interference devices (SQUIDs). The measurement field is in a micro-tesla range (~10 μT-100 μT) and the experiment is conducted in a home-made magnetically-shielded-room (MSR). The measurements are performed by the indirect coupling method in which the signal of nuclei precession is indirectly coupled to the SQUID through a tuned copper coil transformer. In such an arrangement, the interferences of applied measurement and polarization field to the SQUID sensor are avoided and the performance of the SQUID is not destroyed. In order to compare the detection sensitivity obtained by using the SQUID with that achieved using a conventional low-noise-amplifier, we perform the measurements using a commercial room temperature amplifier. The results show that in a wide frequency range (~1 kHz-10 kHz) the measurements with the SQUID sensor exhibit a higher signal-to-noise ratio. Further, we discuss the dependence of NMR peak magnitude on measurement frequency. We attribute the reduction of the peak magnitude at high frequency to the increased field inhomogeneity as the measurement field increases. This is verified by compensating the field gradient using three sets of gradient coils.
文摘Intracavity tunneling induced transparency in asymmetric double-quantum wells embedded in a microcavity in the ultrastrong-coupling regime is investigated by the input-output theory developed by Ciuti and Carusotto. In this system a narrow spectra can be realized under anti-resonant terms of the external dissipation. Fano-interference asymmetric line profile is found in the absorption spectra.
基金supported by the Natural Science Foundation of Hunan Province(No.05JJ40017)Education Department of Hunan Province(No.05B064).
文摘An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%-111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.
文摘In the determination of trace yttrium (Y) in an ytterbium (Yb) matrix byinductively coupled plasma atomic emission spectrometry (ICP-AES), the most prominent line ofyttrium, Y 371.030 nm line, suffers from strong interference due to an emission line of ytterbium.In mis work, a method based on wavelet transform was proposed for the spectral interferencecorrection. Haar wavelet was selected as the mother wavelet. The discrete detail after the thirddecomposition, D3, was chosen for quantitative analysis based on the consideration of bothseparation degree and peak height. The linear correlation coefficient between the height of the leftpositive peak in D3 and the concentration of Y was calculated to be 0.9926. Six synthetic sampleswere analyzed, and the recovery for yttrium varied from 96.3 percent to 110.0 percent. The amountsof yttrium in three ytterbium metal samples were determined by the proposed approach with an averagerelative standard deviation (RSD) of 2.5 percent, and the detection limit for yttrium was 0.016percent. This novel correction technique is fast and convenient, since neither complicated modelassumption nor time-consuming iteration is required. Furthermore, it is not affected by thewavelength drift inherent in monochromators that will severely reduce the accuracy of resultsobtained by some chemometric methods.
文摘The determination of trace impurities in high purity zinc oxide by high resolution inductively coupled plasma mass spectrometry ( HR-ICP-MS ) was investigated. To overcome some poteutially problematic spectral iuterference, measurements were acquired in both middle and high resolution modes. The matrix effects due to the presence of excess HCl and zinc were evaluated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits ranged from 0.02μg/ g to 6 μg/ g depending on the elements. The experimental resalts for the determination of Na, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Mo, Cd, Sb and Pb in several high purity zinc oxide powders were presented.
基金Project(21075138)supported by the National Natural Science Foundation of ChinaProject(cstc2013jcyjA10088)supported by Chongqing Natural Science Foundation,ChinaProject(KJ121311)supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission,China
文摘An analytical method, using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) for rapid simultaneous determination of Be, Na, Mg, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, As, Sn, Sb, Pb and Bi in electrolytic manganese metal, was described. At the beginning, the samples were decomposed by HNO3 and H2504, and then analyzed by SF-ICP-MS. Most of the spectral interferences could be avoided by measuring in different mass resolution modes. The matrix effects due to the excess of sulfuric acid and Mn were evaluated. Correction of matrix effects was conducted by using the internal standard elements. The optimum condition for the determination was investigated and discussed. The detection limit is in the range of 0.001-0.169 gg/L. The current method is applied to the determination of trace impurities in electrolytic manganese metal. And experiments show that good results can be obtained much faster, more accurately and conveniently by current method.
基金Funded by the Hunan Provincial Natural Science Foundation of China(No.05JJ40017)Hunan Provincial Education Department of China (No.07C029 , 08C260)
文摘Trace elements were determined in high purity gold by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Sample were decomposed by aqua regia. To overcome some potentially problematic spectra/ interference, measurements were acquired in both medium and high resolution modes. The matrix effects due to the presence of excessive HCl and Au were evaluated. The optimum conditions for the determination was tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits range from 0.01ug/g to 0.28ug/g depending on the elements. The method is accurate, quick and convenient. It has been applied to the determination of trace elements in high purity gold with satisfactory results.