Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Mutations in the X-linked androgen receptor (AR) gene cause androgen insensitivity syndrome (AIS), resulting in an impaired embryonic sex differentiation in 46,XY genetic men. Complete androgen insensitivity (CAI...Mutations in the X-linked androgen receptor (AR) gene cause androgen insensitivity syndrome (AIS), resulting in an impaired embryonic sex differentiation in 46,XY genetic men. Complete androgen insensitivity (CAIS) produces a female external phenotype, whereas cases with partial androgen insensitivity (PALS) have various ambiguities of the genitalia. Mild androgen insensitivity (MAIS) is characterized by undermasculinization and gynecomastia. Here we describe a 2-month-old 46,XY female patient, with all of the characteristics of CAIS. Defects in testosterone (T) and dihydrotestosterone (DHT) synthesis were excluded. Sequencing of the AR gene showed the presence in exon 6 of a T to C transition in the second base of codon 790, nucleotide position 2369, causing a novel missense Leu790Pro mutation in the ligand-binding domain of the AR protein. The identification of a novel AR mutation in a girl with CAIS provides significant information due to the importance of missense mutations in the ligand-binding domain of the AR, which are able to induce functional abnormalities in the androgen binding capability, stabilization of active conformation, or interaction with coactivators.展开更多
AIM To identify neuron-selective androgen receptor(AR) signaling inhibitors, which could be useful in the treatment of spinal and bulbar muscular atrophy(SBMA), or Kennedy's disease, a neuromuscular disorder in wh...AIM To identify neuron-selective androgen receptor(AR) signaling inhibitors, which could be useful in the treatment of spinal and bulbar muscular atrophy(SBMA), or Kennedy's disease, a neuromuscular disorder in which deterioration of motor neurons leads to progressive muscle weakness. METHODS Cell lines representing prostate, kidney, neuron, adipose, and muscle tissue were developed that stably expressed the CFP-AR-YFP FRET reporter. We used these cells to screen a library of small molecules for cell typeselective AR inhibitors. Secondary screening in luciferase assays was used to identify the best cell-type specific AR inhibitors. The mechanism of action of a neuronselective AR inhibitor was examined in vitro using luciferase reporter assays, immunofluorescence microscopy, and immunoprecipitations. Rats were treated with the most potent compound and tissue-selective AR inhibition was examined using RT-q PCR of AR-regulated genes and immunohistochemistry.RESULTS We identified the thiazole class of antibiotics as com-pounds able to inhibit AR signaling in a neuronal cell line but not a muscle cell line. One of these antibiotics, thiostrepton is able to inhibit the activity of both wild type and polyglutamine expanded AR in neuronal GT1-7 cells with nanomolar potency. The thiazole antibiotics are known to inhibit FOXM1 activity and accordingly, a novel FOXM1 inhibitor FDI-6 also inhibited AR activity in a neuron-selective fashion. The selective inhibition of AR is likely indirect as the varied structures of these compounds would not suggest that they are competitive antagonists. Indeed, we found that FOXM1 expression correlates with cell-type selectivity, FOXM1 co-localizes with AR in the nucleus, and that sh RNA-mediated knock down of FOXM1 reduces AR activity and thiostrepton sensitivity in a neuronal cell line. Thiostrepton treatment reduces FOXM1 levels and the nuclear localization of beta-catenin, a known co-activator of both FOXM1 and AR, and reduces the association between beta-catenin and AR. Treatment of rats with thiostrepton demonstrated AR signaling inhibition in neurons, but not muscles. CONCLUSION Our results suggest that thiazole antibiotics, or other inhibitors of the AR-FOXM1 axis, can inhibit AR signaling selectively in motor neurons and may be useful in the treatment or prevention of SBMA symptoms.展开更多
The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse mod...The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype.展开更多
Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinet...Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs) have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defined clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism.展开更多
Objective The purpose of this study was to investigate the anti-androgenic mechanism of cypermethrin involving coactivators.Methods Mammalian two-hybrid assays were performed to study the effects of cypermethrin on in...Objective The purpose of this study was to investigate the anti-androgenic mechanism of cypermethrin involving coactivators.Methods Mammalian two-hybrid assays were performed to study the effects of cypermethrin on interactions of the androgen receptor(AR)with the coactivators androgen receptor-associated protein70(ARA70)and androgen receptor-associated protein 55(ARA55).Results The results showed that AR–ARA70 and AR–ARA55 interactions were remarkably enhanced by dihydrotestosterone(DHT,P≤0.05).Cypermethrin inhibited DHT-induced AR–ARA70 and AR–ARA55 interactions significantly(P≤0.05).Conclusion The study indicates that cypermethrin exhibits inhibitory effects on AR transcription associated with repression of AR–ARA70 and AR–ARA55 interactions in a ligand-dependent manner.The data show novel anti-androgenic mechanisms of cypermethrin that contribute to male reproductive toxicology.展开更多
Objective: To study the correlations between estrogen receptor (ER) and androgen receptor (AR) and the clinical presentations of prolactinoma and investigate the effect of ER and AR expression on the pathogenesis...Objective: To study the correlations between estrogen receptor (ER) and androgen receptor (AR) and the clinical presentations of prolactinoma and investigate the effect of ER and AR expression on the pathogenesis of prolactinoma in sexual difference. Methods: The clinical data of 30 patients who had undergone transsphenoidal operations in Tongji Hospital from December 2000 to December 2001 were reviewed retrospectively. The clinical information included sex, age, serum-prolactin, size, tumor invasiveness, history of use of bromocriptine and frequency of recurrence. In 20 out of the 30 patients, the ER and AR expression was detected by using immunohistochemistry method. With help of Chi-square test, the relationship between ER, AR and the clinical presentations was analyzed. Results: The statistical values revealed that there was no significant correlation between the ER and AR expression levels with the clinical presentations such as sex, age, tumor size or tumor invasiveness among the 20 patients studied (P〉0.05). Conclusion: The expression of ER or AR is not influenced by the clinical data of prolactinoma such as sex, age, tumor diameter or extent of tumor invasiveness. The tumor is more aggressive in males than in females. In maroadenoma or tumor with hyperprolactineamia (〉200 ng/mL) simple surgical treatment can't successfully cure the prolactinoma. Post-operative bromocriptine therapy can't be determined by the sex of the patients, but is greatly related to the tumor size and serum-prolactin level before operation.展开更多
Objective:Small cell prostate carcinoma(SCPC)is a rare and highly malignant subtype of prostate cancer.SCPC frequently lacks androgen receptor(AR)and prostate-specific antigen(PSA)expression,and often responds poorly ...Objective:Small cell prostate carcinoma(SCPC)is a rare and highly malignant subtype of prostate cancer.SCPC frequently lacks androgen receptor(AR)and prostate-specific antigen(PSA)expression,and often responds poorly to androgen deprivation therapy(ADT).AR splice variant-7(AR-V7)is a truncated AR protein implicated in resistance to AR-targeting therapies.AR-V7 expression in castration-resistant prostate cancers has been evaluated extensively,and blood-based detection of AR-V7 has been associated with lack of response to abiraterone and enzalutamide.However,whether AR-V7 is expressed in SCPC is not known.Methods:Using validated antibodies,we performed immunohistochemistry(IHC)assay for the full-length AR(AR-FL)and(AR-V7)on post-ADT surgical SCPC specimens.Results:Seventy-five percent(9/12)of the specimens showed positive staining for the AR-FL with various intensities.Thirty-three percent(4/12)of the specimens showed positive staining for AR-V7.Among the specimens with positive AR-V7 staining,two samples displayed very weak staining,one sample showed weak-to-moderate staining,and one sample showed strong staining.All positive specimens displayed a heterogeneous pattern of AR-FL/AR-V7 staining.All specimens positive for AR-V7 were also positive for AR-FL.Conclusion:The study findings support the existence of measurable AR-FL and AR-V7 proteins in SCPC specimens.The results also have implications in detection of AR-V7 in specimens obtained through systemic sampling approaches such as circulating tumor cells.A positive AR-V7 finding by blood-based tests is not impossible in patients with SCPC who often demonstrate low PSA values.展开更多
Aberrant activation of androgen receptor(AR)signaling occurs in patients treated with AR-targeted therapies,contributing to the development of castration-resistant prostate cancer(CRPC)and therapeutic resistance.Over ...Aberrant activation of androgen receptor(AR)signaling occurs in patients treated with AR-targeted therapies,contributing to the development of castration-resistant prostate cancer(CRPC)and therapeutic resistance.Over the past decade,many AR variants(AR-Vs)have been identified in prostate cancer cell lines and clinical CRPC specimens.These AR-Vs lack the COOH-terminal ligand-binding domain(LBD),and may mediate constitutively active AR signaling acquired following AR-targeting therapies.AR splice variant-7(AR-V7),one of the most well characterized AR-Vs,can be reliably measured in tissue and liquid biopsy specimens,and blood-based detection of AR-V7 is a reliable indicator of poor outcome to relatively novel hormonal therapies(NHT)such as abiraterone and enzalutamide in men with metastatic CRPC(mCRPC).Given the important clinical implication of AR-Vs,this short review will focus on studies addressing how AR-Vs are regulated in prostate cancer.With regard to the molecular origin of AR-Vs,it is established that expression of AR-Vs is highly correlated with androgen deprivation and suppression of AR signaling.Therapeutic targeting of the AR axis may result in active transcription of the AR gene,elevated activities of certain components of the mRNA splicing machinery,as well as AR genomic alterations,all of which may explain the molecular origin of AR-Vs.Although a unified hypothesis is currently lacking,existing data suggest that elevated expression of AR-Vs,which in general occurs quite specifically in a cellular environment where the canonical AR signaling is suppressed,is driven by both genomic and epigenomic features acquired in the development of CRPC.展开更多
OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells ...OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells are resistant to TRAIL-induced apoptosis.Our objectives are to investigate the underlying molecular mechanisms and to develop strategies to overcome such resistance.METHODS To identify modulators of TRAIL-induced apoptosis,we carried out a genome wide si RNA screen.To validate the screening result,we either silenced or overexpressed the identified genes in various breast cancer cells and changes in growth and TRAIL-induced cell apoptosis were determined in vitro and in an orthotopic xenograft mouse model.Finally,we investigated whether small molecules targeting the identified genes improve the effectiveness of TRAIL-therapy.RESULTS We unexpectedly identified androgen receptor(AR)to be responsible for TRAIL resistance.While AR is classically viewed as the key factor in prostate cancer progression,we found that AR expression levels were markedly elevated in human invasive breast cancer specimens including triple-negative breast cancers(TNBC)that are highly aggressive with poor prognosis.Importantly,breast cancer cell lines express different levels of AR that correlated with their TRAIL resistance.AR overexpression in MDA-MB-231 and MDA-MB-436 cells suppressed the TRAIL sensitivity whereas knockdown of AR rendered MCF-7 and MDA-MB-453 cells sensitive to TRAIL-induced apoptosis.AR overexpression also induced TRAIL resistance in breast tumors in vivo.Further,we observed an upregulation of the TRAIL receptor,death receptor 5(DR5)in breast cancer cells,following the removal or inhibition of AR by its antagonists Casodex and MDV3100.Treatment with AR antagonists also enhanced TRAIL-induced breast cancer cell apoptosis.CONCLUSION AR signaling suppresses TRAIL-induced breast cancer cell apoptosis,in part,by suppressing DR5 expression,and a combination of AR antagonists together with TRAIL may be a novel and effective therapy for TNBC.展开更多
Aim: To determine the effects of the functional domain of saposin C (neurotrophic peptide [NP]) on androgen receptor (AR) expression and transcriptional activity. Methods: We constructed DNA vectors expressing N...Aim: To determine the effects of the functional domain of saposin C (neurotrophic peptide [NP]) on androgen receptor (AR) expression and transcriptional activity. Methods: We constructed DNA vectors expressing NP or a chimeric peptide of the viral TAT transduction domain and NP (TAT-NP) using gene cloning technology. The effects of ectopic expression of NP or TAT-NP on cell growth were examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. Reverse transcription-polymerase chain reaction (RT-PCR), Western blot, transient transfection and reporter gene assays were used to determine the effects of NP on AR expression and activation. Results: NP stimulated proliferation of androgen responsive LNCaP cells in the absence of androgens. RT-PCR and Western blot analyses showed that ectopic expression of NP resulted in induction of AR gene expression, and that the NP-stimulated expression of AR could be synergistically enhanced in the presence of androgens. Furthermore, reporter gene assay results showed that NP could enhance AR transactivation by increasing androgen-inducible gene reporter activity. Conclusion: We provided evidence that ectopic expression of saposin C-originated NP could upregulate AR gene expression and activate the AR transcriptional function in an androgen-independent manner in prostate cancer cells.展开更多
BACKGROUND: Studies have shown that estrogen receptor alpha (ERα), nerve growth factor (NGF), interleukin-2 (IL-2), and androgen receptor (AR) expression in the cerebellum decreases when estrogen levels decr...BACKGROUND: Studies have shown that estrogen receptor alpha (ERα), nerve growth factor (NGF), interleukin-2 (IL-2), and androgen receptor (AR) expression in the cerebellum decreases when estrogen levels decrease in vivo. Soybean isoflavone, a type of non-steroid estrogen with similar molecular structure and function to estradiol, exhibits estrogen-like characteristics. OBJECTIVE: To investigate the effects of various doses of soybean isoflavone on expression of ERa, NGF, IL-2, and AR in the cerebellum of ovariectomized rat, and to determine whether there is a dose-dependent effect.DESIGN, TIME AND SETTING: Controlled trial at the cellular and molecular level. The study was performed at the Experimental Animal Engineering Center, College of Veterinary Medicine, Sichuan Agricultural University from July 2006 to May 2008. MATERIALS: Soybean isoflavone, comprised of daidzin, genistein and isoflavone, was provided by Taiyuan Yuantai Biochemical Industry, China. The ERα, NGF, IL-2, and AR in situ hybridization kit, rabbit anti-rat ERa, NGF, IL-2, and AR monoclonal antibodies, and SABC kit were purchased from Wuhan Boster Biological Technology, China. METHODS: A total of 50 female, Sprague Dawley rats, aged 3 months, were randomly assigned to 5 groups, with 10 animals in each group. With the exception of the sham-operation group (abdominal cavity opening alone), all rats underwent bilateral ovariectomy. At 14 days after surgery, rats in the high-, middle-, and low-dose soybean isoflavone groups were subcutaneously injected with 1.5, 1.0, and 0.5 mg/kg soybean isoflavone, respectively, every 2 days for 6 consecutive weeks. Rats in the sham-operation and ovariectomized groups were subcutaneously injected with absolute alcohol (0.5 mL/kg). MAIN OUTCOME MEASURES: Expression levels and distribution of ERα, NGF, IL-2, and AR in the cerebellum were detected by immunohistochemistry and in situ hybridization. RESULTS: Compared with the sham-operation group, immunoreactive products and hybridization signals of ERa, NGF, IL-2, and AR were significantly decreased in the cerebellar cortex and nuclei of ovariectomized rats (P 〈 0.05 or P 〈 0.01), but increased following soybean isoflavone treatment. In particular, levels of the high-dose soybean isoflavone group were almost restored to levels of the sham-operation group (P 〉 0.05). The immunoreactive products were primarily located in the cytoplasm and neurites, and rarely in the cell membrane and nuclei. However, the hybridization signals were predominantly located in the nuclei, but rarely in the cytoplasm, cell membrane, or neurites. CONCLUSION: Soybean isoflavone upregulated ERα, NGF, IL-2, and AR protein and gene expression in a dose-dependent manner, and played an important role in sustaining and protecting structure and function of cerebellar neurons. Moreover, the similarity of expression patterns of these molecules indicated that they were mutually interactive during the regulation of soybean isoflavone to the cerebellum.展开更多
Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject ...Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject of interest and controversy among geneticists. The polymorphic variations in triplet repeats have been associated with a number of disorders, but at the same time contradictory findings have also been reported. Further, studies on the same disorder in different populations have generated different results. Therefore, combined analysis or review of the published studies has been of much value to extract information on the significance of variations in the gene in various clinical conditions. AR genetics has been reviewed extensively but until now review articles have focused on individual clinical categories such as androgen insensitivity, male infertility, prostate cancer, and so on. We have made the first effort to review most the aspects of AR genetics. The impact of androgens in various disorders and polymorphic variations in the AR gene is the main focus of this review. Additionally, the correlations observed in various studies have been discussed in the light of in vitro evidences available for the effect of AR gene variations on the action of androgens.展开更多
This study was designed to investigate the association between immune inflammation and androgen receptor (AR) expression in benign prostatic hyperplasia (BPH). We retrospectively analyzed 105 prostatectomy specime...This study was designed to investigate the association between immune inflammation and androgen receptor (AR) expression in benign prostatic hyperplasia (BPH). We retrospectively analyzed 105 prostatectomy specimens. An immune inflammation score for each specimen was defined by combining three immunohistochemical markers (CD4, CD8 and CD20). The immunohistochemical markers were CD4 and CD8 for T lymphocytes, CD20 for B lymphocytes and AR antibody for the AR in BPH samples. Rates of CD4, CD8, CD20 and AR expression in BPH were 20 (19.0%), 21 (20.0%), 101 (96.2%) and 48 (45.7%), respectively. Total prostate volume (TPV) was higher in the immune inflammation group than in the non-immune inflammation group (62.7 ml vs. 49.2 ml, t=-2.482, P〈0.05). Patients in the immune inflammation group had a higher serum prostate-specific antigen (PSA) than those in the non-inflammation group (7.5 ng m1-1 vs. 5.4 ng m1-1, t=-2.771, P〈0.05). Specifically, the immune inflammation group showed a higher rate of AR expression than the non-inflammation group (56.1% vs. 28.2%, χ2=7.665, P〈0.05). Our study revealed a strong association between immune inflammation and TPV, serum PSA and AR expression in BPH tissue. Prostate hyperplasia caused by an immune inflammatory process may contribute to BPH progression over time. Therefore, the inflammatory response involved in BPH may be a prime therapeutic target.展开更多
AIM To determine the correlation between expression of androgen receptor (AR) gene and hepatocarcinogenesis. METHODS Male SD rats were used as experimental animals and the animal model of experimental hepatocarcino...AIM To determine the correlation between expression of androgen receptor (AR) gene and hepatocarcinogenesis. METHODS Male SD rats were used as experimental animals and the animal model of experimental hepatocarcinoma was established by means of 3′ me DAB administration. Androgen receptor mRNA was detected by a non radioactive in situ hybridization assay in neoplastic and non neoplastic liver tissues. RESULTS The expression of androgen receptor mRNA was observed only in neoplastic cells and some atypical hyperplastic cells. In the liver tissue of control animal and the remaining normal liver cells adjacent to the carcinoma tissue, no positive signal was seen. CONCLUSION Androgen has an important correlation with hepatocarcinogenesis and the expression of androgen receptor gene might be a mark event during hepatocarcinogenesis.展开更多
Post-translational degradation of protein plays an important role in cell life. We employed chimeric molecules (dihydrotestosterone-based proteolysis-targeting chimeric molecule [DHT-PROTAC]) to facilitate androgen ...Post-translational degradation of protein plays an important role in cell life. We employed chimeric molecules (dihydrotestosterone-based proteolysis-targeting chimeric molecule [DHT-PROTAC]) to facilitate androgen receptor (AR) degradation via the ubiquitin-proteasome pathway (UPP) and to investigate the role of AR in cell proliferation and viability in androgen-sensitive prostate cancer cells. Western blot analysis and immunohistochemistry were applied to analyse AR levels in LNCaP cells after DHT-PROTAC treatment. Cell counting and the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) cell viability assay were used to evaluate cell proliferation and viability after AR elimination in both LNCaP and PC-3 cells. AR was tagged for elimination via the UPP by DHT-PROTAC, and this could be blocked by proteasome inhibitors. Degradation of AR depended on DHT-PROTAC concentration, and either DHT or an ALAPYIP-(arg)8 peptide could compete with DHT-PROTAC. Inhibition of cell proliferation and decreased viability were observed in LNCaP cells, but not in PC-3 or 786-0 cells after DHT-PROTAC treatment. These data indicate that AR elimination is facilitated via the UPP by DHT-PROTAC, and that the growth of LNCaP cells is repressed after AR degradation.展开更多
Aim: To investigate the localization and quantity of androgen receptor (AR) in the salivary glands of rats with further analysis on the effect of castration. Methods: Sixty male Wistar rats, aged 30-60 days, were ...Aim: To investigate the localization and quantity of androgen receptor (AR) in the salivary glands of rats with further analysis on the effect of castration. Methods: Sixty male Wistar rats, aged 30-60 days, were randomly divided into three groups (castrated, sham-operated and normal controls) with 20 rats in each group. The rats in the castrated group were castrated and the submaxillary glands were removed after 1 week. The salivary glands of the rats in the sham-operated and the normal control groups were also removed. Parts of the salivary glands were fixed for immuohistochemistry and in situ hybridization assays. Other parts were used for Western blot. Results: AR immunoreactivity in the three groups was localized in the glandular epithelial cells of the serous acinus and the glandular duct of the salivary gland, mainly in the nuclei. AR mRNA hybridization signals in the salivary glands of the castrated group were mainly distributed in the epithelial cells of the convoluted and secretary ducts; AR mRNA in the sham-operated and the normal control groups were found in the epithelial cells of the convoluted, the secretary and the excretory ducts. The quantity of AR in the salivary glands was decreased significantly in the castrated rats compared with the sham-operated and the normal controls. Moreover, epidermal growth factor (EGF) secreted by the salivary glands was also decreased in the castrated rats. Conclusion: Castration appears to affect the production of AR in the salivary gland and the distribution of the AR mRNA and could further affect the function of the salivary gland. The changes of AR and the distribution of AR mRNA may play an important role in the interactions between the testes and the salivary gland. (Asian J Androl 2005 Sep; 7: 295-301)展开更多
Advanced prostate cancer is responsive to hormone therapy that interferes with androgen receptor (AR) signalling. However, the effect is short-lived, as nearly all tumours progress to a hormone-refractory (HR) sta...Advanced prostate cancer is responsive to hormone therapy that interferes with androgen receptor (AR) signalling. However, the effect is short-lived, as nearly all tumours progress to a hormone-refractory (HR) state, a lethal stage of the disease. Intuitively, the AR should not be involved because hormone therapy that blocks or reduces AR activity is not effective in treating HR tumours. However, there is still a consensus that AR plays an essential role in HR prostate cancer (HRPC) because AR signalling is still functional in HR tumours. AR signalling can be activated in HR tumours through several mechanisms. First, activation of intracellular signal transduction pathways can sensitize the AR to castrate levels of androgens. Also, mutations in the AR can change AR ligand specificity, thereby allowing it to be activated by non-steroids or anti-androgens. Finally, overexpression of the wild-type AR sensitizes itself to low concentrations of androgens. Therefore, drugs targeting AR signalling could still be effective in treating HRPC.展开更多
Aim: To study the effect of androgen and antiandrogen on the level of androgen receptor (AR) mRNA. Methods: The total RNA was extracted from the prostate and analyzed by slot blot analysis. The blots were hybridized w...Aim: To study the effect of androgen and antiandrogen on the level of androgen receptor (AR) mRNA. Methods: The total RNA was extracted from the prostate and analyzed by slot blot analysis. The blots were hybridized with AR cDNA probe and 1A probe (internal control) and autoradiography was performed. The intensity of signal was measured with a densitometer and the ratio of AR RNA and 1A RNA was calculated. Results: Androgenic deprivation produced by castration decreased the weight of the prostate and increased the levels of AR mRNA. Treatment of the castrated rats with testostrone increased the weight of prostate and decreased the levels of AR mRNA. Treatment of normal rats with flutamide decreased the weight of the gland and increased the levels Of AR mRNA. Conclusion: Androgens produce proliferative effect on the prostate and negatively regulate the AR transcription.展开更多
We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the my...We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR△ZF2) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR△ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, IEf2 and calcineurin Aa, was increased in AR△ZF2 muscle, and the expression of all but p57kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.展开更多
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
文摘Mutations in the X-linked androgen receptor (AR) gene cause androgen insensitivity syndrome (AIS), resulting in an impaired embryonic sex differentiation in 46,XY genetic men. Complete androgen insensitivity (CAIS) produces a female external phenotype, whereas cases with partial androgen insensitivity (PALS) have various ambiguities of the genitalia. Mild androgen insensitivity (MAIS) is characterized by undermasculinization and gynecomastia. Here we describe a 2-month-old 46,XY female patient, with all of the characteristics of CAIS. Defects in testosterone (T) and dihydrotestosterone (DHT) synthesis were excluded. Sequencing of the AR gene showed the presence in exon 6 of a T to C transition in the second base of codon 790, nucleotide position 2369, causing a novel missense Leu790Pro mutation in the ligand-binding domain of the AR protein. The identification of a novel AR mutation in a girl with CAIS provides significant information due to the importance of missense mutations in the ligand-binding domain of the AR, which are able to induce functional abnormalities in the androgen binding capability, stabilization of active conformation, or interaction with coactivators.
文摘AIM To identify neuron-selective androgen receptor(AR) signaling inhibitors, which could be useful in the treatment of spinal and bulbar muscular atrophy(SBMA), or Kennedy's disease, a neuromuscular disorder in which deterioration of motor neurons leads to progressive muscle weakness. METHODS Cell lines representing prostate, kidney, neuron, adipose, and muscle tissue were developed that stably expressed the CFP-AR-YFP FRET reporter. We used these cells to screen a library of small molecules for cell typeselective AR inhibitors. Secondary screening in luciferase assays was used to identify the best cell-type specific AR inhibitors. The mechanism of action of a neuronselective AR inhibitor was examined in vitro using luciferase reporter assays, immunofluorescence microscopy, and immunoprecipitations. Rats were treated with the most potent compound and tissue-selective AR inhibition was examined using RT-q PCR of AR-regulated genes and immunohistochemistry.RESULTS We identified the thiazole class of antibiotics as com-pounds able to inhibit AR signaling in a neuronal cell line but not a muscle cell line. One of these antibiotics, thiostrepton is able to inhibit the activity of both wild type and polyglutamine expanded AR in neuronal GT1-7 cells with nanomolar potency. The thiazole antibiotics are known to inhibit FOXM1 activity and accordingly, a novel FOXM1 inhibitor FDI-6 also inhibited AR activity in a neuron-selective fashion. The selective inhibition of AR is likely indirect as the varied structures of these compounds would not suggest that they are competitive antagonists. Indeed, we found that FOXM1 expression correlates with cell-type selectivity, FOXM1 co-localizes with AR in the nucleus, and that sh RNA-mediated knock down of FOXM1 reduces AR activity and thiostrepton sensitivity in a neuronal cell line. Thiostrepton treatment reduces FOXM1 levels and the nuclear localization of beta-catenin, a known co-activator of both FOXM1 and AR, and reduces the association between beta-catenin and AR. Treatment of rats with thiostrepton demonstrated AR signaling inhibition in neurons, but not muscles. CONCLUSION Our results suggest that thiazole antibiotics, or other inhibitors of the AR-FOXM1 axis, can inhibit AR signaling selectively in motor neurons and may be useful in the treatment or prevention of SBMA symptoms.
文摘The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype.
文摘Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs) have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defined clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism.
基金supported by National Natural Science Foundations of China[No.81872647]the Natural Science Foundation of the Jiangsu Higher Education Institutions of China[19KJB330007].
文摘Objective The purpose of this study was to investigate the anti-androgenic mechanism of cypermethrin involving coactivators.Methods Mammalian two-hybrid assays were performed to study the effects of cypermethrin on interactions of the androgen receptor(AR)with the coactivators androgen receptor-associated protein70(ARA70)and androgen receptor-associated protein 55(ARA55).Results The results showed that AR–ARA70 and AR–ARA55 interactions were remarkably enhanced by dihydrotestosterone(DHT,P≤0.05).Cypermethrin inhibited DHT-induced AR–ARA70 and AR–ARA55 interactions significantly(P≤0.05).Conclusion The study indicates that cypermethrin exhibits inhibitory effects on AR transcription associated with repression of AR–ARA70 and AR–ARA55 interactions in a ligand-dependent manner.The data show novel anti-androgenic mechanisms of cypermethrin that contribute to male reproductive toxicology.
基金This project was supported by a grant from the National Natural Science Foundation of China (No. 39670736).
文摘Objective: To study the correlations between estrogen receptor (ER) and androgen receptor (AR) and the clinical presentations of prolactinoma and investigate the effect of ER and AR expression on the pathogenesis of prolactinoma in sexual difference. Methods: The clinical data of 30 patients who had undergone transsphenoidal operations in Tongji Hospital from December 2000 to December 2001 were reviewed retrospectively. The clinical information included sex, age, serum-prolactin, size, tumor invasiveness, history of use of bromocriptine and frequency of recurrence. In 20 out of the 30 patients, the ER and AR expression was detected by using immunohistochemistry method. With help of Chi-square test, the relationship between ER, AR and the clinical presentations was analyzed. Results: The statistical values revealed that there was no significant correlation between the ER and AR expression levels with the clinical presentations such as sex, age, tumor size or tumor invasiveness among the 20 patients studied (P〉0.05). Conclusion: The expression of ER or AR is not influenced by the clinical data of prolactinoma such as sex, age, tumor diameter or extent of tumor invasiveness. The tumor is more aggressive in males than in females. In maroadenoma or tumor with hyperprolactineamia (〉200 ng/mL) simple surgical treatment can't successfully cure the prolactinoma. Post-operative bromocriptine therapy can't be determined by the sex of the patients, but is greatly related to the tumor size and serum-prolactin level before operation.
基金The work at Johns Hopkins University School of Medicine was supported by National Institutes of Health Grants(R01 CA185297 and P30 CA006973)Department of Defense Prostate Cancer Research Program Grants(W81XWH-15-2-0050)+1 种基金Johns Hopkins Prostate SPORE Grant(P50 CA058236)the Prostate Cancer Foundation.
文摘Objective:Small cell prostate carcinoma(SCPC)is a rare and highly malignant subtype of prostate cancer.SCPC frequently lacks androgen receptor(AR)and prostate-specific antigen(PSA)expression,and often responds poorly to androgen deprivation therapy(ADT).AR splice variant-7(AR-V7)is a truncated AR protein implicated in resistance to AR-targeting therapies.AR-V7 expression in castration-resistant prostate cancers has been evaluated extensively,and blood-based detection of AR-V7 has been associated with lack of response to abiraterone and enzalutamide.However,whether AR-V7 is expressed in SCPC is not known.Methods:Using validated antibodies,we performed immunohistochemistry(IHC)assay for the full-length AR(AR-FL)and(AR-V7)on post-ADT surgical SCPC specimens.Results:Seventy-five percent(9/12)of the specimens showed positive staining for the AR-FL with various intensities.Thirty-three percent(4/12)of the specimens showed positive staining for AR-V7.Among the specimens with positive AR-V7 staining,two samples displayed very weak staining,one sample showed weak-to-moderate staining,and one sample showed strong staining.All positive specimens displayed a heterogeneous pattern of AR-FL/AR-V7 staining.All specimens positive for AR-V7 were also positive for AR-FL.Conclusion:The study findings support the existence of measurable AR-FL and AR-V7 proteins in SCPC specimens.The results also have implications in detection of AR-V7 in specimens obtained through systemic sampling approaches such as circulating tumor cells.A positive AR-V7 finding by blood-based tests is not impossible in patients with SCPC who often demonstrate low PSA values.
基金supported by National Institutes of Health Grants(R01 CA185297 and P30 CA006973)Department of Defense Prostate Cancer Research Program Grants(W81XWH-15-2-0050)+1 种基金Johns Hopkins Prostate SPORE Grant(P50 CA058236)the Prostate Cancer Foundation.
文摘Aberrant activation of androgen receptor(AR)signaling occurs in patients treated with AR-targeted therapies,contributing to the development of castration-resistant prostate cancer(CRPC)and therapeutic resistance.Over the past decade,many AR variants(AR-Vs)have been identified in prostate cancer cell lines and clinical CRPC specimens.These AR-Vs lack the COOH-terminal ligand-binding domain(LBD),and may mediate constitutively active AR signaling acquired following AR-targeting therapies.AR splice variant-7(AR-V7),one of the most well characterized AR-Vs,can be reliably measured in tissue and liquid biopsy specimens,and blood-based detection of AR-V7 is a reliable indicator of poor outcome to relatively novel hormonal therapies(NHT)such as abiraterone and enzalutamide in men with metastatic CRPC(mCRPC).Given the important clinical implication of AR-Vs,this short review will focus on studies addressing how AR-Vs are regulated in prostate cancer.With regard to the molecular origin of AR-Vs,it is established that expression of AR-Vs is highly correlated with androgen deprivation and suppression of AR signaling.Therapeutic targeting of the AR axis may result in active transcription of the AR gene,elevated activities of certain components of the mRNA splicing machinery,as well as AR genomic alterations,all of which may explain the molecular origin of AR-Vs.Although a unified hypothesis is currently lacking,existing data suggest that elevated expression of AR-Vs,which in general occurs quite specifically in a cellular environment where the canonical AR signaling is suppressed,is driven by both genomic and epigenomic features acquired in the development of CRPC.
基金supported by National Institutes of Health(R21CA193271 and R01HL116849)National Natural Science Foundation of China(31100595 and 31300683)
文摘OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells are resistant to TRAIL-induced apoptosis.Our objectives are to investigate the underlying molecular mechanisms and to develop strategies to overcome such resistance.METHODS To identify modulators of TRAIL-induced apoptosis,we carried out a genome wide si RNA screen.To validate the screening result,we either silenced or overexpressed the identified genes in various breast cancer cells and changes in growth and TRAIL-induced cell apoptosis were determined in vitro and in an orthotopic xenograft mouse model.Finally,we investigated whether small molecules targeting the identified genes improve the effectiveness of TRAIL-therapy.RESULTS We unexpectedly identified androgen receptor(AR)to be responsible for TRAIL resistance.While AR is classically viewed as the key factor in prostate cancer progression,we found that AR expression levels were markedly elevated in human invasive breast cancer specimens including triple-negative breast cancers(TNBC)that are highly aggressive with poor prognosis.Importantly,breast cancer cell lines express different levels of AR that correlated with their TRAIL resistance.AR overexpression in MDA-MB-231 and MDA-MB-436 cells suppressed the TRAIL sensitivity whereas knockdown of AR rendered MCF-7 and MDA-MB-453 cells sensitive to TRAIL-induced apoptosis.AR overexpression also induced TRAIL resistance in breast tumors in vivo.Further,we observed an upregulation of the TRAIL receptor,death receptor 5(DR5)in breast cancer cells,following the removal or inhibition of AR by its antagonists Casodex and MDV3100.Treatment with AR antagonists also enhanced TRAIL-induced breast cancer cell apoptosis.CONCLUSION AR signaling suppresses TRAIL-induced breast cancer cell apoptosis,in part,by suppressing DR5 expression,and a combination of AR antagonists together with TRAIL may be a novel and effective therapy for TNBC.
文摘Aim: To determine the effects of the functional domain of saposin C (neurotrophic peptide [NP]) on androgen receptor (AR) expression and transcriptional activity. Methods: We constructed DNA vectors expressing NP or a chimeric peptide of the viral TAT transduction domain and NP (TAT-NP) using gene cloning technology. The effects of ectopic expression of NP or TAT-NP on cell growth were examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. Reverse transcription-polymerase chain reaction (RT-PCR), Western blot, transient transfection and reporter gene assays were used to determine the effects of NP on AR expression and activation. Results: NP stimulated proliferation of androgen responsive LNCaP cells in the absence of androgens. RT-PCR and Western blot analyses showed that ectopic expression of NP resulted in induction of AR gene expression, and that the NP-stimulated expression of AR could be synergistically enhanced in the presence of androgens. Furthermore, reporter gene assay results showed that NP could enhance AR transactivation by increasing androgen-inducible gene reporter activity. Conclusion: We provided evidence that ectopic expression of saposin C-originated NP could upregulate AR gene expression and activate the AR transcriptional function in an androgen-independent manner in prostate cancer cells.
基金the Program for Changing Scholars and Innovative Research Team in University, No. IRT0848Youth Foundation of Sichuan Province Science & Technology Bureau, No. 08ZQ026-061
文摘BACKGROUND: Studies have shown that estrogen receptor alpha (ERα), nerve growth factor (NGF), interleukin-2 (IL-2), and androgen receptor (AR) expression in the cerebellum decreases when estrogen levels decrease in vivo. Soybean isoflavone, a type of non-steroid estrogen with similar molecular structure and function to estradiol, exhibits estrogen-like characteristics. OBJECTIVE: To investigate the effects of various doses of soybean isoflavone on expression of ERa, NGF, IL-2, and AR in the cerebellum of ovariectomized rat, and to determine whether there is a dose-dependent effect.DESIGN, TIME AND SETTING: Controlled trial at the cellular and molecular level. The study was performed at the Experimental Animal Engineering Center, College of Veterinary Medicine, Sichuan Agricultural University from July 2006 to May 2008. MATERIALS: Soybean isoflavone, comprised of daidzin, genistein and isoflavone, was provided by Taiyuan Yuantai Biochemical Industry, China. The ERα, NGF, IL-2, and AR in situ hybridization kit, rabbit anti-rat ERa, NGF, IL-2, and AR monoclonal antibodies, and SABC kit were purchased from Wuhan Boster Biological Technology, China. METHODS: A total of 50 female, Sprague Dawley rats, aged 3 months, were randomly assigned to 5 groups, with 10 animals in each group. With the exception of the sham-operation group (abdominal cavity opening alone), all rats underwent bilateral ovariectomy. At 14 days after surgery, rats in the high-, middle-, and low-dose soybean isoflavone groups were subcutaneously injected with 1.5, 1.0, and 0.5 mg/kg soybean isoflavone, respectively, every 2 days for 6 consecutive weeks. Rats in the sham-operation and ovariectomized groups were subcutaneously injected with absolute alcohol (0.5 mL/kg). MAIN OUTCOME MEASURES: Expression levels and distribution of ERα, NGF, IL-2, and AR in the cerebellum were detected by immunohistochemistry and in situ hybridization. RESULTS: Compared with the sham-operation group, immunoreactive products and hybridization signals of ERa, NGF, IL-2, and AR were significantly decreased in the cerebellar cortex and nuclei of ovariectomized rats (P 〈 0.05 or P 〈 0.01), but increased following soybean isoflavone treatment. In particular, levels of the high-dose soybean isoflavone group were almost restored to levels of the sham-operation group (P 〉 0.05). The immunoreactive products were primarily located in the cytoplasm and neurites, and rarely in the cell membrane and nuclei. However, the hybridization signals were predominantly located in the nuclei, but rarely in the cytoplasm, cell membrane, or neurites. CONCLUSION: Soybean isoflavone upregulated ERα, NGF, IL-2, and AR protein and gene expression in a dose-dependent manner, and played an important role in sustaining and protecting structure and function of cerebellar neurons. Moreover, the similarity of expression patterns of these molecules indicated that they were mutually interactive during the regulation of soybean isoflavone to the cerebellum.
文摘Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject of interest and controversy among geneticists. The polymorphic variations in triplet repeats have been associated with a number of disorders, but at the same time contradictory findings have also been reported. Further, studies on the same disorder in different populations have generated different results. Therefore, combined analysis or review of the published studies has been of much value to extract information on the significance of variations in the gene in various clinical conditions. AR genetics has been reviewed extensively but until now review articles have focused on individual clinical categories such as androgen insensitivity, male infertility, prostate cancer, and so on. We have made the first effort to review most the aspects of AR genetics. The impact of androgens in various disorders and polymorphic variations in the AR gene is the main focus of this review. Additionally, the correlations observed in various studies have been discussed in the light of in vitro evidences available for the effect of AR gene variations on the action of androgens.
文摘This study was designed to investigate the association between immune inflammation and androgen receptor (AR) expression in benign prostatic hyperplasia (BPH). We retrospectively analyzed 105 prostatectomy specimens. An immune inflammation score for each specimen was defined by combining three immunohistochemical markers (CD4, CD8 and CD20). The immunohistochemical markers were CD4 and CD8 for T lymphocytes, CD20 for B lymphocytes and AR antibody for the AR in BPH samples. Rates of CD4, CD8, CD20 and AR expression in BPH were 20 (19.0%), 21 (20.0%), 101 (96.2%) and 48 (45.7%), respectively. Total prostate volume (TPV) was higher in the immune inflammation group than in the non-immune inflammation group (62.7 ml vs. 49.2 ml, t=-2.482, P〈0.05). Patients in the immune inflammation group had a higher serum prostate-specific antigen (PSA) than those in the non-inflammation group (7.5 ng m1-1 vs. 5.4 ng m1-1, t=-2.771, P〈0.05). Specifically, the immune inflammation group showed a higher rate of AR expression than the non-inflammation group (56.1% vs. 28.2%, χ2=7.665, P〈0.05). Our study revealed a strong association between immune inflammation and TPV, serum PSA and AR expression in BPH tissue. Prostate hyperplasia caused by an immune inflammatory process may contribute to BPH progression over time. Therefore, the inflammatory response involved in BPH may be a prime therapeutic target.
文摘AIM To determine the correlation between expression of androgen receptor (AR) gene and hepatocarcinogenesis. METHODS Male SD rats were used as experimental animals and the animal model of experimental hepatocarcinoma was established by means of 3′ me DAB administration. Androgen receptor mRNA was detected by a non radioactive in situ hybridization assay in neoplastic and non neoplastic liver tissues. RESULTS The expression of androgen receptor mRNA was observed only in neoplastic cells and some atypical hyperplastic cells. In the liver tissue of control animal and the remaining normal liver cells adjacent to the carcinoma tissue, no positive signal was seen. CONCLUSION Androgen has an important correlation with hepatocarcinogenesis and the expression of androgen receptor gene might be a mark event during hepatocarcinogenesis.
基金We are grateful to the National Natural Science Foundation of China (Grant No. 30600618) and the Science and Technology Commission of Shanghai Municipality (Grant No. 07QA14037) for their financial support. We thank Professor Qi-Xiang Guo and Liang Ding for providing the DHT-PROTAC.
文摘Post-translational degradation of protein plays an important role in cell life. We employed chimeric molecules (dihydrotestosterone-based proteolysis-targeting chimeric molecule [DHT-PROTAC]) to facilitate androgen receptor (AR) degradation via the ubiquitin-proteasome pathway (UPP) and to investigate the role of AR in cell proliferation and viability in androgen-sensitive prostate cancer cells. Western blot analysis and immunohistochemistry were applied to analyse AR levels in LNCaP cells after DHT-PROTAC treatment. Cell counting and the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) cell viability assay were used to evaluate cell proliferation and viability after AR elimination in both LNCaP and PC-3 cells. AR was tagged for elimination via the UPP by DHT-PROTAC, and this could be blocked by proteasome inhibitors. Degradation of AR depended on DHT-PROTAC concentration, and either DHT or an ALAPYIP-(arg)8 peptide could compete with DHT-PROTAC. Inhibition of cell proliferation and decreased viability were observed in LNCaP cells, but not in PC-3 or 786-0 cells after DHT-PROTAC treatment. These data indicate that AR elimination is facilitated via the UPP by DHT-PROTAC, and that the growth of LNCaP cells is repressed after AR degradation.
文摘Aim: To investigate the localization and quantity of androgen receptor (AR) in the salivary glands of rats with further analysis on the effect of castration. Methods: Sixty male Wistar rats, aged 30-60 days, were randomly divided into three groups (castrated, sham-operated and normal controls) with 20 rats in each group. The rats in the castrated group were castrated and the submaxillary glands were removed after 1 week. The salivary glands of the rats in the sham-operated and the normal control groups were also removed. Parts of the salivary glands were fixed for immuohistochemistry and in situ hybridization assays. Other parts were used for Western blot. Results: AR immunoreactivity in the three groups was localized in the glandular epithelial cells of the serous acinus and the glandular duct of the salivary gland, mainly in the nuclei. AR mRNA hybridization signals in the salivary glands of the castrated group were mainly distributed in the epithelial cells of the convoluted and secretary ducts; AR mRNA in the sham-operated and the normal control groups were found in the epithelial cells of the convoluted, the secretary and the excretory ducts. The quantity of AR in the salivary glands was decreased significantly in the castrated rats compared with the sham-operated and the normal controls. Moreover, epidermal growth factor (EGF) secreted by the salivary glands was also decreased in the castrated rats. Conclusion: Castration appears to affect the production of AR in the salivary gland and the distribution of the AR mRNA and could further affect the function of the salivary gland. The changes of AR and the distribution of AR mRNA may play an important role in the interactions between the testes and the salivary gland. (Asian J Androl 2005 Sep; 7: 295-301)
基金Work in this laboratory is supported by the Chinese Academy of Sciences (KSCX2-YW-R-04), the National Basic Research Program of China (973 Program) (2007CB947900), the Shanghai Pujiang Plan (07pj 14097) and the National Natural Science Foundation of China (30870538).
文摘Advanced prostate cancer is responsive to hormone therapy that interferes with androgen receptor (AR) signalling. However, the effect is short-lived, as nearly all tumours progress to a hormone-refractory (HR) state, a lethal stage of the disease. Intuitively, the AR should not be involved because hormone therapy that blocks or reduces AR activity is not effective in treating HR tumours. However, there is still a consensus that AR plays an essential role in HR prostate cancer (HRPC) because AR signalling is still functional in HR tumours. AR signalling can be activated in HR tumours through several mechanisms. First, activation of intracellular signal transduction pathways can sensitize the AR to castrate levels of androgens. Also, mutations in the AR can change AR ligand specificity, thereby allowing it to be activated by non-steroids or anti-androgens. Finally, overexpression of the wild-type AR sensitizes itself to low concentrations of androgens. Therefore, drugs targeting AR signalling could still be effective in treating HRPC.
文摘Aim: To study the effect of androgen and antiandrogen on the level of androgen receptor (AR) mRNA. Methods: The total RNA was extracted from the prostate and analyzed by slot blot analysis. The blots were hybridized with AR cDNA probe and 1A probe (internal control) and autoradiography was performed. The intensity of signal was measured with a densitometer and the ratio of AR RNA and 1A RNA was calculated. Results: Androgenic deprivation produced by castration decreased the weight of the prostate and increased the levels of AR mRNA. Treatment of the castrated rats with testostrone increased the weight of prostate and decreased the levels of AR mRNA. Treatment of normal rats with flutamide decreased the weight of the gland and increased the levels Of AR mRNA. Conclusion: Androgens produce proliferative effect on the prostate and negatively regulate the AR transcription.
文摘We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR△ZF2) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR△ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, IEf2 and calcineurin Aa, was increased in AR△ZF2 muscle, and the expression of all but p57kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.