期刊文献+
共找到86,888篇文章
< 1 2 250 >
每页显示 20 50 100
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications 被引量:2
1
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy 被引量:2
2
作者 Vicente Felipo 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第48期7737-7743,共7页
Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the ... Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE. 展开更多
关键词 Hepatic encephalopathy glutamate receptors Neurological alterations Cognitive function Motor func-tion NMDA receptors Metabotropic glutamate receptors Nitric oxide CGMP
下载PDF
Metabotropic glutamate receptors and nitric oxide in dopaminergic neurotoxicity
3
作者 Valentina Bashkatova 《World Journal of Psychiatry》 SCIE 2021年第10期830-840,共11页
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substa... Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra.Therefore,the study of the mechanisms,as well as the search for new targets for the prevention and treatment of neurodegenerative diseases,is an important focus of modern neuroscience.PD is primarily caused by dysfunction of dopaminergic neurons;however,other neurotransmitter systems are also involved.Research reports have indicated that the glutamatergic system is involved in different pathological conditions,including dopaminergic neurotoxicity.Over the last two decades,the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors(mGluRs)in the development of extrapyramidal disorders.However,the specific mechanisms driving these processes are presently unclear.The participation of the universal neuronal messenger nitric oxide(NO)in the mechanisms of dopaminergic neurotoxicity has attracted increased attention.The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity.More precisely,we focused on studies conducted on the rotenone-induced PD model.This review is also an outline of our own results obtained using the method of electron paramagnetic resonance,which allows quantitation of NO radicals in brain structures. 展开更多
关键词 Dopaminergic neurotoxicity Metabotropic glutamate receptors Nitric oxide ROTENONE Parkinson's disease
下载PDF
Glutamate receptors and glutamatergic signalling in the peripheral nerves 被引量:4
4
作者 Ting-Jiun Chen Maria Kukley 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第3期438-447,共10页
In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwan... In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwann cells that are ideally placed to respond to,and possibly shape,axonal activity.The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells,as well as signalling via diffusible substances.Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves.Two types of experimental findings support this idea:first,glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves;second,axons and Schwann cells in the peripheral nerves express glutamate receptors.Yet,the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing.Remarkably,in the central nervous system,axons and myelinating glia are involved in glutamatergic signalling.This signalling occurs via different mechanisms,the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells.Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation,migration,and differentiation of oligodendrocyte precursor cells,survival of oligodendrocytes,and re-myelination of axons after damage.Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves?What is the functional role of glutamate receptors in the peripheral nerves?Is activation of glutamate receptors in the nerves beneficial or harmful during diseases?In this review,we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves.We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases. 展开更多
关键词 AMPA receptors axons glutamate METABOTROPIC glutamate receptors MYELINATION nerve injury NMDA receptors peripheral nervous system PNS Schwann cells synaptic SIGNALLING
下载PDF
Optogenetics-induced activation of glutamate receptors improves memory function in mice with Alzheimer’s disease 被引量:6
5
作者 Ke-Wei Wang Xiao-Lin Ye +2 位作者 Ting Huang Xi-Fei Yang Liang-Yu Zou 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2147-2155,共9页
Optogenetics is a combination of optics and genetics technology that can be used to activate or inhibit specific cells in tissues. It has been used to treat Parkinson’s disease, epilepsy and neurological diseases, bu... Optogenetics is a combination of optics and genetics technology that can be used to activate or inhibit specific cells in tissues. It has been used to treat Parkinson’s disease, epilepsy and neurological diseases, but rarely Alzheimer’s disease. Adeno-associated virus carrying the CaMK promoter driving the optogenetic channelrhodopsin-2 (CHR2) gene (or without the CHR2 gene, as control) was injected into the bilateral dentate gyri, followed by repeated intrahippocampal injections of soluble low-molecular-weight amyloid-β1–42 peptide (Aβ1–42). Subsequently, the region was stimulated with a 473 nm laser (1–3 ms, 10 Hz, 5 minutes). The novel object recognition test was conducted to test memory function in mice. Immunohistochemical staining was performed to analyze the numbers of NeuN and synapsin Ia/b-positive cells in the hippocampus. Western blot assay was carried out to analyze the expression levels of glial fibrillary acidic protein, NeuN, synapsin Ia/b, metabotropic glutamate receptor-1a (mGluR-1a), mGluR-5, N-methyl-D-aspartate receptor subunit NR1, glutamate receptor 2, interleukin-1β, interleukin-6 and interleukin-10. Optogenetic stimulation improved working and short-term memory in mice with Alzheimer’s disease. This neuroprotective effect was associated with increased expression of NR1, glutamate receptor 2 and mGluR-5 in the hippocampus, and decreased expression of glial fibrillary acidic protein and interleukin-6. Our results show that optogenetics can be used to regulate the neuronal-glial network to ameliorate memory functions in mice with Alzheimer’s disease. The study was approved by the Animal Resources Committee of Jinan University, China (approval No. LL-KT-2011134) on February 28, 2011. 展开更多
关键词 nerve REGENERATION Alzheimer's disease amyloid-β1-42 DENTATE GYRUS channelrhodopsin-2 glutamate receptors memory neuroinflammation novel object recognition immunohistochemistry western blot assay neural REGENERATION
下载PDF
Localization and role of metabotropic glutamate receptors subtype 5 in the gastrointestinal tract 被引量:3
6
作者 Andrea Ferrigno Clarissa Berardo +3 位作者 Laura G Di Pasqua Veronica Siciliano Plinio Richelmi Mariapia Vairetti 《World Journal of Gastroenterology》 SCIE CAS 2017年第25期4500-4507,共8页
Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically c... Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically conserved, extracellular orthosteric binding site and a more variable allosteric binding site, located on the heptahelical transmembrane domain. The mGluR5 receptor has proved to be a key pharmacological target in conditions affecting the central nervous system (CNS) but its presence outside the CNS underscores its potential role in pathologies affecting peripheral organs such as the gastrointestinal (GI) tract and accessory digestive organs such as the tongue, liver and pancreas. Following identification of mGluR5s in the mouth, various studies have subsequently demonstrated its involvement in mechanical allodynia, inflammation, pain and oral cancer. mGluR5 expression has also been identified in gastroesophageal vagal pathways. Indeed, experimental and human studies have demonstrated that mGluR5 blockade reduces transient lower sphincter relaxation and reflux episodes. In the intestine, mGluR5s have been shown to be involved in the control of intestinal inflammation, visceral pain and the epithelial barrier function. In the liver, mGluR5s have a permissive role in the onset of ischemic injury in rat and mice hepatocytes. Conversely, livers from mice treated with selective negative allosteric modulators and mGluR5 knockout mice are protected against ischemic injury. Similar results have been observed in experimental models of free-radical injury and in vivo mouse models of acetaminophen intoxication. Finally, mGluR5s in the pancreas are associated with insulin secretion control. The picture is, however, far from complete as the review attempts to establish in particular as regards identifying specific targets and innovative therapeutic approaches for the treatment of GI disorders. 展开更多
关键词 Metabotropic glutamate receptor subtype 5 ESOPHAGUS INTESTINE LIVER PANCREAS
下载PDF
Fractalkine: multiple strategies to counteract glutamate receptors activation leading to neuroprotection 被引量:2
7
作者 Clotilde Lauro 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1214-1215,共2页
Glutamate(Glu)is the main excitatory amino acid in the brain and plays a pivotal role in many neurophysiological functions.Nevertheless,an excess and prolonged exposure to Glu determines the overactivation of glutam... Glutamate(Glu)is the main excitatory amino acid in the brain and plays a pivotal role in many neurophysiological functions.Nevertheless,an excess and prolonged exposure to Glu determines the overactivation of glutamate receptors(Glu Rs)with consequent impairment of cellular calcium(Ca2+)homeostasis, 展开更多
关键词 glutamate excitatory impairment homeostasis neuronal glutamate NMDAR intracellular adenosine microglia
下载PDF
Phosphorylation of group I metabotropic glutamate receptors in drug addiction and translational research 被引量:2
8
作者 Limin Mao John Q Wang 《Journal of Translational Neuroscience》 2016年第1期17-23,共7页
Protein phosphorylation is an important posttranslational modification of group I metabotropic glutamate receptors ( mGluR1 and mGluR5 subtypes, mGluR1/5 ) which are widely distributed throughout the mammalian brain... Protein phosphorylation is an important posttranslational modification of group I metabotropic glutamate receptors ( mGluR1 and mGluR5 subtypes, mGluR1/5 ) which are widely distributed throughout the mammalian brain. Several common protein kinases are involved in this type of modification, including protein kinase A, protein kinase C, and extracellular signal-regulated kinase. Through constitutive and activity-dependent phosphorylation of mGluR1/5 at specific residues, protein kinases regulate trafficking, subcellular/subsynaptic distribution, and function of modified receptors. Increasing evidence demonstrates that mGluR1/5 phosphorylation in the mesolimbic reward circuitry is sensitive to chronic psychostimulant exposure and undergoes adaptive changes in its abundance and activity. These changes contribute to long-term excitatory synaptic plasticity related to the addictive property of drugs of abuse. The rapid progress in uncovering the neurochemical basis of addiction has fostered bench-to-bed translational research by targeting mGluR1/5 for developing effective pharmacotherapies for treating addiction in humans. This review summarizes recent data from the studies analyzing mGluR1/5 phosphorylation. Phosphorylation-dependent mechanisms in stimulant-in-duced mGluR1/5 and behavioral plasticity are also discussed in association with increasing interest in mGluR1/5 in translational medicine. 展开更多
关键词 MGLUR PKA PKC MAPK ERK STRIATUM nucleus accumbens G protein-coupled receptors
下载PDF
Olfactory receptors in neural regeneration in the central nervous system
9
作者 Rafael Franco Claudia Garrigós +3 位作者 Toni Capó Joan Serrano-Marín Rafael Rivas-Santisteban Jaume Lillo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2480-2494,共15页
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor... Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries. 展开更多
关键词 adenosine receptors adrenergic receptors ectopic expression G proteincoupled receptors GLIA NEURONS
下载PDF
N-methyl-D-aspartate glutamate receptors (NMDARs) in stroke pathogenesis and treatments
10
作者 Wenlin Chen Yang Ge Yutian Wang 《Journal of Translational Neuroscience》 2019年第4期1-12,共12页
N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions... N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions of NMDARs and their associated signaling pathways.Over the past decades,NMDARs have been found to exert dual effects in neuronal deaths signaling and neuronal survival signaling during cerebral ischemia.Moreover,many complex intracellular signaling pathways downstream of NMDAR activation have been elucidated,which provide novel targets for developing much-needed neuro-protectants for patients with stroke.In this review,we will discuss the recent progress in understanding the underlying mechanisms of stroke related to NMDAR activation and the potential therapeutic strategies based on these discoveries. 展开更多
关键词 N-METHYL-D-ASPARTATE glutamate receptors(NMDARs) STROKE treatments NEURONAL survival SIGNALING complex(NSC) NEURONAL death SIGNALING complex(NDC)
下载PDF
Induction of Increased Intracellular Calcium in Astrocytes by Glutamate through Activating NMDA and AMPA Receptors 被引量:1
11
作者 张蕲 胡波 +1 位作者 孙圣刚 童萼塘 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2003年第3期254-257,共4页
To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium signal was investigated by monitorin... To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium signal was investigated by monitoring the fluctuation of intracellular Ca 2+ concentration ([Ca 2+ ] i) on the basis of Fura-2 single cell fluorescent ratio (F345/F380). The changes in the effect of glutamate on the intracellular calcium signal were observed after blockage of NMDA and(or) AMPA receptors. It was found that L-glutamate could induce an increased [Ca 2+ ] i in most of the cells in concentration- and time-dependent manner. D-(-)-2-amino-5-phosphonopentanoic acid (D-AP-5, a selective antagonist of the NMDA receptor) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a selective antagonist of the AMPA receptor) could abolish the effects of NMDA and AMPA respectively. The treatment of D-AP-5 and CNQX simultaneously or respectively could attenuate the effect of L-glutamate at varying degrees. All these indicated that glutamate could modulate intracellular Ca 2+ of pure cultured rat astrocytes through different pathways. The activation of NMDA and AMPA receptors took part in the complex mechanisms. 展开更多
关键词 glutamate ASTROCYTES NMDA receptor AMPA receptor [Ca 2+] i
下载PDF
Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors 被引量:1
12
作者 Zhiheng GOU Xiao WANG Wen WANG 《Zoological Research》 CAS CSCD 北大核心 2012年第6期I0013-I0019,共7页
Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite ... Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have began to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate "yin and yang" balanced regulation. Finally, based on current advances, we propose several potential directions of future research. 展开更多
关键词 Gamma-aminobutyric acid glutamate NEUROTRANSMITTER RECEPTOR EVOLUTION Yin and yang regulation
下载PDF
Downregulation of metabotropic glutamate receptors mGluR5 and glutamate transporter EAAC1 in the myenteric plexus of the diabetic rat ileum
13
作者 Yanhua Bai Jun Zhang Hongyang Shi Fei Dai 《Journal of Nanjing Medical University》 2008年第6期356-361,共6页
Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a ... Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a diabetic group and a control group, Gastric emptying and small intestine transit rates were measured and histologic and molecular changes in glutamatergic nerves in the ileal myenteric plexus were observed, mGluR5 receptor and EAAC1 transporter changes in the diabetic rats were studied using fluorescence immunohistochemistry and RT-PCR. Results:Eighteen weeks after the establishment of the diabetic rats model, gastric emptying and small intestine transit rates were found to be significantly delayed in the diabetic group when compared with the control group. The density of glutamatergic ganglia and neurons in the ileal myenterie plexus were significantly decreased in the diabetic group when compared with control group(P 〈 0.05) and the mGluR5 receptors and EAAC1 transporters were downregulated in the diabetic rats(P 〈 0.05). Conclusion: Decreased glutamatergic enteric ganglia and neurons and decreased mGluR5 receptors and EAAC1 transporters in the intestinal myenteric plexus is one of the mechanisms of diabetic gastroenteropathy in rats. 展开更多
关键词 glutamate MGLUR5 EAAC 1 Enteric Nervous System Diabetic gastroenteropathy
下载PDF
M_(4) muscarinic receptors regulates dopamine/DARPP-32 signaling and glutamate transmis⁃sion to balance dopaminergic D1 function in mouse dorsal striatum
14
作者 ZHOU Hu ZHANG Jing-xin +5 位作者 LI Xing SHI Hua-xiang SUI Xin WANG Yong-an LI Jin WANG Li-yun 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期689-689,共1页
OBJECTIVE Abnormal striatal dopaminergic and glutamatergic neurotransmis⁃sion is central to the pathophysiology of schizo⁃phrenia.In this study,we investigated the roles of M4 receptor interplay with D1 signaling in s... OBJECTIVE Abnormal striatal dopaminergic and glutamatergic neurotransmis⁃sion is central to the pathophysiology of schizo⁃phrenia.In this study,we investigated the roles of M4 receptor interplay with D1 signaling in stria⁃tal neurotransmission that affect glutamatergic transmission to control the etiology of neuropsy⁃chiatric disorders.METHODS To study dorsal striatum(DS)region-specific neuronal and behav⁃ioral responses modulated by M4 receptors,we used clustered regularly interspaced short palin⁃dromic repeats-associated protein 9 technology to generate mice lacking M4 in the dorsal stria⁃tum(DS-M4-KD).The M4 positive allosteric modu⁃lator,VU0467154,were used to study the phar⁃macologically profiles with M4 receptor stimula⁃tion in WT mice.Oxotremorine M(Oxo-M),a no subtype-selective muscarinic agonist,was used to show that mAchRs activation,in order to dissect the particular function of M4,in DS-M4-KD mice.Open filed test and forced swim test were used to assess the change of psychiatric-like behav⁃iors.Western blotting and immunohistochemistry were used to detect protein levels of phosphory⁃lation site of dopamine-and cAMP-regulated phosphoprotein of 32 ku(DARPP-32).Whole-cell patch-clamp recording was used to assess M4-mediated cholinergic inhibition of glutamater⁃gic synaptic input transmission.RESULTS West⁃ern blotting and immunohistochemistry assay showed VU0467154(5 mg·kg-1,ip)promoted phosphorylation of DARPP-32 at Thr75,and atten⁃uated D1-dependent phosphorylation of DARPP-32 at Thr34 within the mouse DS.Consistently,the Oxo-M(4μg,icv)also increased DARPP-32 phosphorylation at site Thr75 to reversed phos⁃phorylation at site Thr34 in WT mice,but not in DS-M4-KD mice.In parallel with altered DARPP-32 responses,VU0467154 or Oxo-M evoked a psychological stress response and reversed D1-induced hyperlocomotion in mice in open field test and force swim tests.However,Oxo-M sup⁃pression of D1-depengdeng behavioral respons⁃es was impaired in DS-M4-KD mice.Whole-cell patch recording showed that VU0467154 or Oxo-M mediated endogenous cholinergic inhibition of miniature excitatory postsynaptic currents through M4 receptors,which in turn suppressed D1-depen⁃dent glutamatergic synaptic transmission in the DS.CONCLUSION This study provides evidence for the role of M4 receptors in regulation of dopa⁃mine/DARPP-32 signaling and glutamate respons⁃es in the DS,and therefore modulation of psychi⁃atric behaviors associated with D1 signaling.This results indicate the mechanisms of treatments targeting M4 in psychiatric disorders. 展开更多
关键词 dorsal striatum dopamine receptor 1 muscarinic acetylcholine M4 receptor dopamine-and cAMP-regulated phosphoprotein of 32 ku
下载PDF
The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury
15
作者 Jennifer M.Colón-Mercado Aranza I.Torrado-Tapias +5 位作者 Iris K.Salgado Jose M.Santiago Samuel E.Ocasio Rivera Dina P.Bracho-Rincon Luis H.Pagan Rivera Jorge D.Miranda 《Neural Regeneration Research》 SCIE CAS 2025年第11期3317-3329,共13页
In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epice... In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment. 展开更多
关键词 ALLODYNIA central neuropathic pain EAAT-1/GLAST EAAT-2/GLT-1 glutamate transporters selective estrogen receptor modulator sexual dimorphism spinal cord injury TRAUMA
下载PDF
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
16
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
Glutamate and excitotoxicity in central nervous system disorders:ionotropic glutamate receptors as a target for neuroprotection
17
作者 Jorge Y.Magdaleno Roman Christian Chapa Gonzalez 《Neuroprotection》 2024年第2期137-150,共14页
Recent advances in neuroscience have illuminated the central role of glutamate dysregulation in various neurological disorders.The glutamatergic system has emerged as a central player in the pathophysiology of various... Recent advances in neuroscience have illuminated the central role of glutamate dysregulation in various neurological disorders.The glutamatergic system has emerged as a central player in the pathophysiology of various neurological disorders.The dysregulation of glutamate signaling,leading to excitotoxicity and neuronal cell death,has been a focal point in understanding the underlying mechanisms of these conditions.This has prompted a paradigm shift in neuroprotection research,with a growing emphasis on targeting ionotropic glutamate receptors(iGluRs)to restore glutamatergic homeostasis.This review provides a comprehensive overview of recent advancements in the field of iGluR-targeted neuroprotection.We further investigate the implications of glutamate dysregulation in the central nervous system(CNS)disorders,highlighting the complex interplay between excitotoxicity and neuroprotection.We elucidate the multifaceted factors that render neurons vulnerable to excitotoxic damage,emphasizing the need for innovative therapeutic approaches.This review provides an extensive survey of the burgeoning field of iGluR-targeted neuroprotection.It showcases the significant potential of a wide array of compounds,encompassing both natural and synthetic agents,to modulate iGluRs and ameliorate excitotoxicity and oxidative stress-induced neuronal damage.These compounds have demonstrated impressive neuroprotective effects in diverse experimental models,from glutamate-induced toxicity to traumatic brain injuries.We advocate for further research and clinical investigations to harness the full therapeutic potential of iGluR modulation,heralding a promising era in neuroprotection and CNs disorder management. 展开更多
关键词 central nervous system EXCITOTOXICITY glutamate ionotropic glutamate receptors NEUROPROTECTION
原文传递
Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation
18
作者 Min-shan LI Xiang-hong WANG Heng WANG 《Current Medical Science》 SCIE CAS 2024年第3期475-484,共10页
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator... Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions. 展开更多
关键词 proton-activated G protein-coupled receptors INFLAMMATION IMMUNOMODULATION DISEASE
下载PDF
Characterization of Domeless receptors and the role of Bd Domeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis
19
作者 Wei Zhang Shaoyang Li +2 位作者 Rong Li Jinzhi Niu Jinjun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1274-1284,共11页
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this... The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis. 展开更多
关键词 Bactrocera dorsalis JAK/STAT pathway Domeless receptors antiviral immunity symbiont-like virus
下载PDF
The Role of Toll-Like Receptors and Nuclear Factor κB p65 Protein in the Pathogenesis of Otitis Media
20
作者 Qingchen He Yongbo Zhu Bi Qiang 《Journal of Biosciences and Medicines》 2024年第10期246-257,共12页
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi... The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease. 展开更多
关键词 Otitis Media Toll-Like receptors Nuclear Factor κB p65 Signaling Pathway
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部