Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the ...Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE.展开更多
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substa...Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra.Therefore,the study of the mechanisms,as well as the search for new targets for the prevention and treatment of neurodegenerative diseases,is an important focus of modern neuroscience.PD is primarily caused by dysfunction of dopaminergic neurons;however,other neurotransmitter systems are also involved.Research reports have indicated that the glutamatergic system is involved in different pathological conditions,including dopaminergic neurotoxicity.Over the last two decades,the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors(mGluRs)in the development of extrapyramidal disorders.However,the specific mechanisms driving these processes are presently unclear.The participation of the universal neuronal messenger nitric oxide(NO)in the mechanisms of dopaminergic neurotoxicity has attracted increased attention.The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity.More precisely,we focused on studies conducted on the rotenone-induced PD model.This review is also an outline of our own results obtained using the method of electron paramagnetic resonance,which allows quantitation of NO radicals in brain structures.展开更多
In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwan...In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwann cells that are ideally placed to respond to,and possibly shape,axonal activity.The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells,as well as signalling via diffusible substances.Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves.Two types of experimental findings support this idea:first,glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves;second,axons and Schwann cells in the peripheral nerves express glutamate receptors.Yet,the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing.Remarkably,in the central nervous system,axons and myelinating glia are involved in glutamatergic signalling.This signalling occurs via different mechanisms,the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells.Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation,migration,and differentiation of oligodendrocyte precursor cells,survival of oligodendrocytes,and re-myelination of axons after damage.Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves?What is the functional role of glutamate receptors in the peripheral nerves?Is activation of glutamate receptors in the nerves beneficial or harmful during diseases?In this review,we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves.We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.展开更多
Optogenetics is a combination of optics and genetics technology that can be used to activate or inhibit specific cells in tissues. It has been used to treat Parkinson’s disease, epilepsy and neurological diseases, bu...Optogenetics is a combination of optics and genetics technology that can be used to activate or inhibit specific cells in tissues. It has been used to treat Parkinson’s disease, epilepsy and neurological diseases, but rarely Alzheimer’s disease. Adeno-associated virus carrying the CaMK promoter driving the optogenetic channelrhodopsin-2 (CHR2) gene (or without the CHR2 gene, as control) was injected into the bilateral dentate gyri, followed by repeated intrahippocampal injections of soluble low-molecular-weight amyloid-β1–42 peptide (Aβ1–42). Subsequently, the region was stimulated with a 473 nm laser (1–3 ms, 10 Hz, 5 minutes). The novel object recognition test was conducted to test memory function in mice. Immunohistochemical staining was performed to analyze the numbers of NeuN and synapsin Ia/b-positive cells in the hippocampus. Western blot assay was carried out to analyze the expression levels of glial fibrillary acidic protein, NeuN, synapsin Ia/b, metabotropic glutamate receptor-1a (mGluR-1a), mGluR-5, N-methyl-D-aspartate receptor subunit NR1, glutamate receptor 2, interleukin-1β, interleukin-6 and interleukin-10. Optogenetic stimulation improved working and short-term memory in mice with Alzheimer’s disease. This neuroprotective effect was associated with increased expression of NR1, glutamate receptor 2 and mGluR-5 in the hippocampus, and decreased expression of glial fibrillary acidic protein and interleukin-6. Our results show that optogenetics can be used to regulate the neuronal-glial network to ameliorate memory functions in mice with Alzheimer’s disease. The study was approved by the Animal Resources Committee of Jinan University, China (approval No. LL-KT-2011134) on February 28, 2011.展开更多
Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically c...Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically conserved, extracellular orthosteric binding site and a more variable allosteric binding site, located on the heptahelical transmembrane domain. The mGluR5 receptor has proved to be a key pharmacological target in conditions affecting the central nervous system (CNS) but its presence outside the CNS underscores its potential role in pathologies affecting peripheral organs such as the gastrointestinal (GI) tract and accessory digestive organs such as the tongue, liver and pancreas. Following identification of mGluR5s in the mouth, various studies have subsequently demonstrated its involvement in mechanical allodynia, inflammation, pain and oral cancer. mGluR5 expression has also been identified in gastroesophageal vagal pathways. Indeed, experimental and human studies have demonstrated that mGluR5 blockade reduces transient lower sphincter relaxation and reflux episodes. In the intestine, mGluR5s have been shown to be involved in the control of intestinal inflammation, visceral pain and the epithelial barrier function. In the liver, mGluR5s have a permissive role in the onset of ischemic injury in rat and mice hepatocytes. Conversely, livers from mice treated with selective negative allosteric modulators and mGluR5 knockout mice are protected against ischemic injury. Similar results have been observed in experimental models of free-radical injury and in vivo mouse models of acetaminophen intoxication. Finally, mGluR5s in the pancreas are associated with insulin secretion control. The picture is, however, far from complete as the review attempts to establish in particular as regards identifying specific targets and innovative therapeutic approaches for the treatment of GI disorders.展开更多
Glutamate(Glu)is the main excitatory amino acid in the brain and plays a pivotal role in many neurophysiological functions.Nevertheless,an excess and prolonged exposure to Glu determines the overactivation of glutam...Glutamate(Glu)is the main excitatory amino acid in the brain and plays a pivotal role in many neurophysiological functions.Nevertheless,an excess and prolonged exposure to Glu determines the overactivation of glutamate receptors(Glu Rs)with consequent impairment of cellular calcium(Ca2+)homeostasis,展开更多
Protein phosphorylation is an important posttranslational modification of group I metabotropic glutamate receptors ( mGluR1 and mGluR5 subtypes, mGluR1/5 ) which are widely distributed throughout the mammalian brain...Protein phosphorylation is an important posttranslational modification of group I metabotropic glutamate receptors ( mGluR1 and mGluR5 subtypes, mGluR1/5 ) which are widely distributed throughout the mammalian brain. Several common protein kinases are involved in this type of modification, including protein kinase A, protein kinase C, and extracellular signal-regulated kinase. Through constitutive and activity-dependent phosphorylation of mGluR1/5 at specific residues, protein kinases regulate trafficking, subcellular/subsynaptic distribution, and function of modified receptors. Increasing evidence demonstrates that mGluR1/5 phosphorylation in the mesolimbic reward circuitry is sensitive to chronic psychostimulant exposure and undergoes adaptive changes in its abundance and activity. These changes contribute to long-term excitatory synaptic plasticity related to the addictive property of drugs of abuse. The rapid progress in uncovering the neurochemical basis of addiction has fostered bench-to-bed translational research by targeting mGluR1/5 for developing effective pharmacotherapies for treating addiction in humans. This review summarizes recent data from the studies analyzing mGluR1/5 phosphorylation. Phosphorylation-dependent mechanisms in stimulant-in-duced mGluR1/5 and behavioral plasticity are also discussed in association with increasing interest in mGluR1/5 in translational medicine.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions...N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions of NMDARs and their associated signaling pathways.Over the past decades,NMDARs have been found to exert dual effects in neuronal deaths signaling and neuronal survival signaling during cerebral ischemia.Moreover,many complex intracellular signaling pathways downstream of NMDAR activation have been elucidated,which provide novel targets for developing much-needed neuro-protectants for patients with stroke.In this review,we will discuss the recent progress in understanding the underlying mechanisms of stroke related to NMDAR activation and the potential therapeutic strategies based on these discoveries.展开更多
To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium signal was investigated by monitorin...To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium signal was investigated by monitoring the fluctuation of intracellular Ca 2+ concentration ([Ca 2+ ] i) on the basis of Fura-2 single cell fluorescent ratio (F345/F380). The changes in the effect of glutamate on the intracellular calcium signal were observed after blockage of NMDA and(or) AMPA receptors. It was found that L-glutamate could induce an increased [Ca 2+ ] i in most of the cells in concentration- and time-dependent manner. D-(-)-2-amino-5-phosphonopentanoic acid (D-AP-5, a selective antagonist of the NMDA receptor) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a selective antagonist of the AMPA receptor) could abolish the effects of NMDA and AMPA respectively. The treatment of D-AP-5 and CNQX simultaneously or respectively could attenuate the effect of L-glutamate at varying degrees. All these indicated that glutamate could modulate intracellular Ca 2+ of pure cultured rat astrocytes through different pathways. The activation of NMDA and AMPA receptors took part in the complex mechanisms.展开更多
Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite ...Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have began to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate "yin and yang" balanced regulation. Finally, based on current advances, we propose several potential directions of future research.展开更多
Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a ...Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a diabetic group and a control group, Gastric emptying and small intestine transit rates were measured and histologic and molecular changes in glutamatergic nerves in the ileal myenteric plexus were observed, mGluR5 receptor and EAAC1 transporter changes in the diabetic rats were studied using fluorescence immunohistochemistry and RT-PCR. Results:Eighteen weeks after the establishment of the diabetic rats model, gastric emptying and small intestine transit rates were found to be significantly delayed in the diabetic group when compared with the control group. The density of glutamatergic ganglia and neurons in the ileal myenterie plexus were significantly decreased in the diabetic group when compared with control group(P 〈 0.05) and the mGluR5 receptors and EAAC1 transporters were downregulated in the diabetic rats(P 〈 0.05). Conclusion: Decreased glutamatergic enteric ganglia and neurons and decreased mGluR5 receptors and EAAC1 transporters in the intestinal myenteric plexus is one of the mechanisms of diabetic gastroenteropathy in rats.展开更多
OBJECTIVE Abnormal striatal dopaminergic and glutamatergic neurotransmis⁃sion is central to the pathophysiology of schizo⁃phrenia.In this study,we investigated the roles of M4 receptor interplay with D1 signaling in s...OBJECTIVE Abnormal striatal dopaminergic and glutamatergic neurotransmis⁃sion is central to the pathophysiology of schizo⁃phrenia.In this study,we investigated the roles of M4 receptor interplay with D1 signaling in stria⁃tal neurotransmission that affect glutamatergic transmission to control the etiology of neuropsy⁃chiatric disorders.METHODS To study dorsal striatum(DS)region-specific neuronal and behav⁃ioral responses modulated by M4 receptors,we used clustered regularly interspaced short palin⁃dromic repeats-associated protein 9 technology to generate mice lacking M4 in the dorsal stria⁃tum(DS-M4-KD).The M4 positive allosteric modu⁃lator,VU0467154,were used to study the phar⁃macologically profiles with M4 receptor stimula⁃tion in WT mice.Oxotremorine M(Oxo-M),a no subtype-selective muscarinic agonist,was used to show that mAchRs activation,in order to dissect the particular function of M4,in DS-M4-KD mice.Open filed test and forced swim test were used to assess the change of psychiatric-like behav⁃iors.Western blotting and immunohistochemistry were used to detect protein levels of phosphory⁃lation site of dopamine-and cAMP-regulated phosphoprotein of 32 ku(DARPP-32).Whole-cell patch-clamp recording was used to assess M4-mediated cholinergic inhibition of glutamater⁃gic synaptic input transmission.RESULTS West⁃ern blotting and immunohistochemistry assay showed VU0467154(5 mg·kg-1,ip)promoted phosphorylation of DARPP-32 at Thr75,and atten⁃uated D1-dependent phosphorylation of DARPP-32 at Thr34 within the mouse DS.Consistently,the Oxo-M(4μg,icv)also increased DARPP-32 phosphorylation at site Thr75 to reversed phos⁃phorylation at site Thr34 in WT mice,but not in DS-M4-KD mice.In parallel with altered DARPP-32 responses,VU0467154 or Oxo-M evoked a psychological stress response and reversed D1-induced hyperlocomotion in mice in open field test and force swim tests.However,Oxo-M sup⁃pression of D1-depengdeng behavioral respons⁃es was impaired in DS-M4-KD mice.Whole-cell patch recording showed that VU0467154 or Oxo-M mediated endogenous cholinergic inhibition of miniature excitatory postsynaptic currents through M4 receptors,which in turn suppressed D1-depen⁃dent glutamatergic synaptic transmission in the DS.CONCLUSION This study provides evidence for the role of M4 receptors in regulation of dopa⁃mine/DARPP-32 signaling and glutamate respons⁃es in the DS,and therefore modulation of psychi⁃atric behaviors associated with D1 signaling.This results indicate the mechanisms of treatments targeting M4 in psychiatric disorders.展开更多
In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epice...In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
Recent advances in neuroscience have illuminated the central role of glutamate dysregulation in various neurological disorders.The glutamatergic system has emerged as a central player in the pathophysiology of various...Recent advances in neuroscience have illuminated the central role of glutamate dysregulation in various neurological disorders.The glutamatergic system has emerged as a central player in the pathophysiology of various neurological disorders.The dysregulation of glutamate signaling,leading to excitotoxicity and neuronal cell death,has been a focal point in understanding the underlying mechanisms of these conditions.This has prompted a paradigm shift in neuroprotection research,with a growing emphasis on targeting ionotropic glutamate receptors(iGluRs)to restore glutamatergic homeostasis.This review provides a comprehensive overview of recent advancements in the field of iGluR-targeted neuroprotection.We further investigate the implications of glutamate dysregulation in the central nervous system(CNS)disorders,highlighting the complex interplay between excitotoxicity and neuroprotection.We elucidate the multifaceted factors that render neurons vulnerable to excitotoxic damage,emphasizing the need for innovative therapeutic approaches.This review provides an extensive survey of the burgeoning field of iGluR-targeted neuroprotection.It showcases the significant potential of a wide array of compounds,encompassing both natural and synthetic agents,to modulate iGluRs and ameliorate excitotoxicity and oxidative stress-induced neuronal damage.These compounds have demonstrated impressive neuroprotective effects in diverse experimental models,from glutamate-induced toxicity to traumatic brain injuries.We advocate for further research and clinical investigations to harness the full therapeutic potential of iGluR modulation,heralding a promising era in neuroprotection and CNs disorder management.展开更多
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator...Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.展开更多
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this...The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
基金Supported by grants from the Ministerio de Ciencia y Tecnología, No. SAF2002-00851 and SAF2005-06089 and from Ministerio de Sanidad, No. Red G03-155 and PI050253 of Spain and by grants from Consellería de Empresa, Universidad y Ciencia, and de Sanidad, Generalitat Valenciana, No. Grupos03/001, GV04B-055, GV04B-012, GVS05/082 and ACOMP06/005 and AP-005/06
文摘Patients with liver disease may present hepatic enceph- alopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations, including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death. The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE. These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced, which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE. However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing, hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and hypokinesia. However, the possible secondary effects of mGluR1 antagonists should be previously evaluated. These studies are setting the basis for designing therapeutic procedures to specifically treat the individual neurological alterations in patients with HE.
文摘Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons.Parkinson's disease(PD)is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra.Therefore,the study of the mechanisms,as well as the search for new targets for the prevention and treatment of neurodegenerative diseases,is an important focus of modern neuroscience.PD is primarily caused by dysfunction of dopaminergic neurons;however,other neurotransmitter systems are also involved.Research reports have indicated that the glutamatergic system is involved in different pathological conditions,including dopaminergic neurotoxicity.Over the last two decades,the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors(mGluRs)in the development of extrapyramidal disorders.However,the specific mechanisms driving these processes are presently unclear.The participation of the universal neuronal messenger nitric oxide(NO)in the mechanisms of dopaminergic neurotoxicity has attracted increased attention.The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity.More precisely,we focused on studies conducted on the rotenone-induced PD model.This review is also an outline of our own results obtained using the method of electron paramagnetic resonance,which allows quantitation of NO radicals in brain structures.
基金the laboratory of Maria Kukley was supported by the Excellence Strategy Program of the University of Tübingen(Deutsche Forschungsgemeinschaft,ZUK63)
文摘In the peripheral nervous system,the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves.Axons within the nerves are in close contact with myelinating glia,the Schwann cells that are ideally placed to respond to,and possibly shape,axonal activity.The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells,as well as signalling via diffusible substances.Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves.Two types of experimental findings support this idea:first,glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves;second,axons and Schwann cells in the peripheral nerves express glutamate receptors.Yet,the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing.Remarkably,in the central nervous system,axons and myelinating glia are involved in glutamatergic signalling.This signalling occurs via different mechanisms,the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells.Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation,migration,and differentiation of oligodendrocyte precursor cells,survival of oligodendrocytes,and re-myelination of axons after damage.Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves?What is the functional role of glutamate receptors in the peripheral nerves?Is activation of glutamate receptors in the nerves beneficial or harmful during diseases?In this review,we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves.We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.
基金supported by the National Natural Science Foundation of China,No.81171191(to LYZ)the Shenzhen Special Fund Project on Strategic Emerging Industry Development of China,No.JCYJ20160422170522075(to LYZ)the Shenzhen Healthcare Research Project of China,No.201601015(to LYZ)
文摘Optogenetics is a combination of optics and genetics technology that can be used to activate or inhibit specific cells in tissues. It has been used to treat Parkinson’s disease, epilepsy and neurological diseases, but rarely Alzheimer’s disease. Adeno-associated virus carrying the CaMK promoter driving the optogenetic channelrhodopsin-2 (CHR2) gene (or without the CHR2 gene, as control) was injected into the bilateral dentate gyri, followed by repeated intrahippocampal injections of soluble low-molecular-weight amyloid-β1–42 peptide (Aβ1–42). Subsequently, the region was stimulated with a 473 nm laser (1–3 ms, 10 Hz, 5 minutes). The novel object recognition test was conducted to test memory function in mice. Immunohistochemical staining was performed to analyze the numbers of NeuN and synapsin Ia/b-positive cells in the hippocampus. Western blot assay was carried out to analyze the expression levels of glial fibrillary acidic protein, NeuN, synapsin Ia/b, metabotropic glutamate receptor-1a (mGluR-1a), mGluR-5, N-methyl-D-aspartate receptor subunit NR1, glutamate receptor 2, interleukin-1β, interleukin-6 and interleukin-10. Optogenetic stimulation improved working and short-term memory in mice with Alzheimer’s disease. This neuroprotective effect was associated with increased expression of NR1, glutamate receptor 2 and mGluR-5 in the hippocampus, and decreased expression of glial fibrillary acidic protein and interleukin-6. Our results show that optogenetics can be used to regulate the neuronal-glial network to ameliorate memory functions in mice with Alzheimer’s disease. The study was approved by the Animal Resources Committee of Jinan University, China (approval No. LL-KT-2011134) on February 28, 2011.
基金Supported by Italian ministry of University,Research and Instruction
文摘Metabotropic glutamate receptor subtype 5 (mGluR5) is a Group I mGlu subfamily of receptors coupled to the inositol trisphosphate/diacylglycerol pathway. Like other mGluR subtypes, mGluR5s contain a phylogenetically conserved, extracellular orthosteric binding site and a more variable allosteric binding site, located on the heptahelical transmembrane domain. The mGluR5 receptor has proved to be a key pharmacological target in conditions affecting the central nervous system (CNS) but its presence outside the CNS underscores its potential role in pathologies affecting peripheral organs such as the gastrointestinal (GI) tract and accessory digestive organs such as the tongue, liver and pancreas. Following identification of mGluR5s in the mouth, various studies have subsequently demonstrated its involvement in mechanical allodynia, inflammation, pain and oral cancer. mGluR5 expression has also been identified in gastroesophageal vagal pathways. Indeed, experimental and human studies have demonstrated that mGluR5 blockade reduces transient lower sphincter relaxation and reflux episodes. In the intestine, mGluR5s have been shown to be involved in the control of intestinal inflammation, visceral pain and the epithelial barrier function. In the liver, mGluR5s have a permissive role in the onset of ischemic injury in rat and mice hepatocytes. Conversely, livers from mice treated with selective negative allosteric modulators and mGluR5 knockout mice are protected against ischemic injury. Similar results have been observed in experimental models of free-radical injury and in vivo mouse models of acetaminophen intoxication. Finally, mGluR5s in the pancreas are associated with insulin secretion control. The picture is, however, far from complete as the review attempts to establish in particular as regards identifying specific targets and innovative therapeutic approaches for the treatment of GI disorders.
文摘Glutamate(Glu)is the main excitatory amino acid in the brain and plays a pivotal role in many neurophysiological functions.Nevertheless,an excess and prolonged exposure to Glu determines the overactivation of glutamate receptors(Glu Rs)with consequent impairment of cellular calcium(Ca2+)homeostasis,
文摘Protein phosphorylation is an important posttranslational modification of group I metabotropic glutamate receptors ( mGluR1 and mGluR5 subtypes, mGluR1/5 ) which are widely distributed throughout the mammalian brain. Several common protein kinases are involved in this type of modification, including protein kinase A, protein kinase C, and extracellular signal-regulated kinase. Through constitutive and activity-dependent phosphorylation of mGluR1/5 at specific residues, protein kinases regulate trafficking, subcellular/subsynaptic distribution, and function of modified receptors. Increasing evidence demonstrates that mGluR1/5 phosphorylation in the mesolimbic reward circuitry is sensitive to chronic psychostimulant exposure and undergoes adaptive changes in its abundance and activity. These changes contribute to long-term excitatory synaptic plasticity related to the addictive property of drugs of abuse. The rapid progress in uncovering the neurochemical basis of addiction has fostered bench-to-bed translational research by targeting mGluR1/5 for developing effective pharmacotherapies for treating addiction in humans. This review summarizes recent data from the studies analyzing mGluR1/5 phosphorylation. Phosphorylation-dependent mechanisms in stimulant-in-duced mGluR1/5 and behavioral plasticity are also discussed in association with increasing interest in mGluR1/5 in translational medicine.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
文摘N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions of NMDARs and their associated signaling pathways.Over the past decades,NMDARs have been found to exert dual effects in neuronal deaths signaling and neuronal survival signaling during cerebral ischemia.Moreover,many complex intracellular signaling pathways downstream of NMDAR activation have been elucidated,which provide novel targets for developing much-needed neuro-protectants for patients with stroke.In this review,we will discuss the recent progress in understanding the underlying mechanisms of stroke related to NMDAR activation and the potential therapeutic strategies based on these discoveries.
基金ThisprojectwassupportedbyagrantfromNationalNaturalSciencesFoundationofChina (No .30 0 4 0 0 37)
文摘To study the effect of glutamate on the intracellular calcium signal of pure cultured rat astrocytes and the role of NMDA and AMPA receptors in the procedure, the change of calcium signal was investigated by monitoring the fluctuation of intracellular Ca 2+ concentration ([Ca 2+ ] i) on the basis of Fura-2 single cell fluorescent ratio (F345/F380). The changes in the effect of glutamate on the intracellular calcium signal were observed after blockage of NMDA and(or) AMPA receptors. It was found that L-glutamate could induce an increased [Ca 2+ ] i in most of the cells in concentration- and time-dependent manner. D-(-)-2-amino-5-phosphonopentanoic acid (D-AP-5, a selective antagonist of the NMDA receptor) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a selective antagonist of the AMPA receptor) could abolish the effects of NMDA and AMPA respectively. The treatment of D-AP-5 and CNQX simultaneously or respectively could attenuate the effect of L-glutamate at varying degrees. All these indicated that glutamate could modulate intracellular Ca 2+ of pure cultured rat astrocytes through different pathways. The activation of NMDA and AMPA receptors took part in the complex mechanisms.
文摘Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have began to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate "yin and yang" balanced regulation. Finally, based on current advances, we propose several potential directions of future research.
文摘Objective: To study the morphologic abnormalities of the myenteric plexus in diabetic rats and to explore the mechanism of their effect on gastrointestinal motility. Methods: Forty rats were randomly divided into a diabetic group and a control group, Gastric emptying and small intestine transit rates were measured and histologic and molecular changes in glutamatergic nerves in the ileal myenteric plexus were observed, mGluR5 receptor and EAAC1 transporter changes in the diabetic rats were studied using fluorescence immunohistochemistry and RT-PCR. Results:Eighteen weeks after the establishment of the diabetic rats model, gastric emptying and small intestine transit rates were found to be significantly delayed in the diabetic group when compared with the control group. The density of glutamatergic ganglia and neurons in the ileal myenterie plexus were significantly decreased in the diabetic group when compared with control group(P 〈 0.05) and the mGluR5 receptors and EAAC1 transporters were downregulated in the diabetic rats(P 〈 0.05). Conclusion: Decreased glutamatergic enteric ganglia and neurons and decreased mGluR5 receptors and EAAC1 transporters in the intestinal myenteric plexus is one of the mechanisms of diabetic gastroenteropathy in rats.
文摘OBJECTIVE Abnormal striatal dopaminergic and glutamatergic neurotransmis⁃sion is central to the pathophysiology of schizo⁃phrenia.In this study,we investigated the roles of M4 receptor interplay with D1 signaling in stria⁃tal neurotransmission that affect glutamatergic transmission to control the etiology of neuropsy⁃chiatric disorders.METHODS To study dorsal striatum(DS)region-specific neuronal and behav⁃ioral responses modulated by M4 receptors,we used clustered regularly interspaced short palin⁃dromic repeats-associated protein 9 technology to generate mice lacking M4 in the dorsal stria⁃tum(DS-M4-KD).The M4 positive allosteric modu⁃lator,VU0467154,were used to study the phar⁃macologically profiles with M4 receptor stimula⁃tion in WT mice.Oxotremorine M(Oxo-M),a no subtype-selective muscarinic agonist,was used to show that mAchRs activation,in order to dissect the particular function of M4,in DS-M4-KD mice.Open filed test and forced swim test were used to assess the change of psychiatric-like behav⁃iors.Western blotting and immunohistochemistry were used to detect protein levels of phosphory⁃lation site of dopamine-and cAMP-regulated phosphoprotein of 32 ku(DARPP-32).Whole-cell patch-clamp recording was used to assess M4-mediated cholinergic inhibition of glutamater⁃gic synaptic input transmission.RESULTS West⁃ern blotting and immunohistochemistry assay showed VU0467154(5 mg·kg-1,ip)promoted phosphorylation of DARPP-32 at Thr75,and atten⁃uated D1-dependent phosphorylation of DARPP-32 at Thr34 within the mouse DS.Consistently,the Oxo-M(4μg,icv)also increased DARPP-32 phosphorylation at site Thr75 to reversed phos⁃phorylation at site Thr34 in WT mice,but not in DS-M4-KD mice.In parallel with altered DARPP-32 responses,VU0467154 or Oxo-M evoked a psychological stress response and reversed D1-induced hyperlocomotion in mice in open field test and force swim tests.However,Oxo-M sup⁃pression of D1-depengdeng behavioral respons⁃es was impaired in DS-M4-KD mice.Whole-cell patch recording showed that VU0467154 or Oxo-M mediated endogenous cholinergic inhibition of miniature excitatory postsynaptic currents through M4 receptors,which in turn suppressed D1-depen⁃dent glutamatergic synaptic transmission in the DS.CONCLUSION This study provides evidence for the role of M4 receptors in regulation of dopa⁃mine/DARPP-32 signaling and glutamate respons⁃es in the DS,and therefore modulation of psychi⁃atric behaviors associated with D1 signaling.This results indicate the mechanisms of treatments targeting M4 in psychiatric disorders.
基金supported by COBRE(P30GM149367)the Puerto Rico Science&Technology Trust(2022-00125)+1 种基金MBRS-RISE Program(R25 GM061838)SC1GM144032 program(all to JDM)。
文摘In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
文摘Recent advances in neuroscience have illuminated the central role of glutamate dysregulation in various neurological disorders.The glutamatergic system has emerged as a central player in the pathophysiology of various neurological disorders.The dysregulation of glutamate signaling,leading to excitotoxicity and neuronal cell death,has been a focal point in understanding the underlying mechanisms of these conditions.This has prompted a paradigm shift in neuroprotection research,with a growing emphasis on targeting ionotropic glutamate receptors(iGluRs)to restore glutamatergic homeostasis.This review provides a comprehensive overview of recent advancements in the field of iGluR-targeted neuroprotection.We further investigate the implications of glutamate dysregulation in the central nervous system(CNS)disorders,highlighting the complex interplay between excitotoxicity and neuroprotection.We elucidate the multifaceted factors that render neurons vulnerable to excitotoxic damage,emphasizing the need for innovative therapeutic approaches.This review provides an extensive survey of the burgeoning field of iGluR-targeted neuroprotection.It showcases the significant potential of a wide array of compounds,encompassing both natural and synthetic agents,to modulate iGluRs and ameliorate excitotoxicity and oxidative stress-induced neuronal damage.These compounds have demonstrated impressive neuroprotective effects in diverse experimental models,from glutamate-induced toxicity to traumatic brain injuries.We advocate for further research and clinical investigations to harness the full therapeutic potential of iGluR modulation,heralding a promising era in neuroprotection and CNs disorder management.
基金supported by the National Nature Science Foundation of China(No.81873694)the Key Research and Development Program of Hubei Province(No.2022BCA005)Knowledge Innovation Program of Wuhan Basic Research(No.2022020801010446).
文摘Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
基金This work was supported by the National Natural Science Foundation of China(32202278)the Chongqing Special Postdoctoral Science Foundation of Chinathe earmarked fund for China Agricultural Research System(CARS-26)。
文摘The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.