Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode m...Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode materials,manganese dioxide with high voltage,environmental protection,and high theoretical specific capacity receives considerable attention.However,the problems of structural instability,manganese dissolution,and poor electrical conductivity make the exploration of high-performance manganese dioxide still a great challenge and impede its practical applications.Besides,zinc storage mechanisms involved are complex and somewhat controversial.To address these issues,tremendous efforts,such as surface engineering,heteroatoms doping,defect engineering,electrolyte modification,and some advanced characterization technologies,have been devoted to improving its electrochemical performance and illustrating zinc storage mechanism.In this review,we particularly focus on the classification of manganese dioxide based on crystal structures,zinc ions storage mechanisms,the existing challenges,and corresponding optimization strategies as well as structure-performance relationship.In the final section,the application perspectives of manganese oxide cathode materials in AZIBs are prospected.展开更多
In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a g...In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a gel formation, using maleic acid(CHO) as the carbon source, followed by annealing at low temperature of 270 °C. A uniform carbon network among the α-MnOnanoparticles was observed by transmission electron microscopy. When tested in a zinc cell, the α-MnO@C exhibited a high initial discharge capacity of 272 m Ah/g under 66 m A/g current density compared to 213 m Ah/g, at the same current density, displayed by the pristine sample. Further, α-MnO@C demonstrated superior cycleability compared to the pristine samples. This study may pave the way for the utilizing carbon-coated MnOelectrodes for aqueous ZIB applications and thereby contribute to realizing high performance eco-friendly batteries.展开更多
The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature. The prepared sample was characterized with X-ray diffraction(XRD), scanning electro...The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature. The prepared sample was characterized with X-ray diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller(BET) surface analysis, Fourier transform infrared(FTIR) spectrometry, cyclic voltammetry, alternative current(AC) impedance test and battery discharge test. It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area. The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution, and exhibits larger discharge capacity than EMD, especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.展开更多
Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their s...Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their safety, biodegradability, biocompatibility, environmental benignancy, and low cost. With respect to these advances, a flexible alkaline zinc-manganese dioxide (Zn-MnO2) battery is fabricated with a kelp-based electrolyte in this study. To the best of our knowledge, pure kelp is utilized as a semi-solid electrolyte for flexible Zn-MnO2 alkaline batteries for the first time, with which the as-assembled battery exhibited a specific capacity of 60 mA·h and could discharge for 120 h. Furthermore, the as-assembled Zn-MnO2 battery can be bent into a ring-shape and power a light-emitting diode screen, showing promising potential for the practical application in the future flexible, portable and biodegradable electronic devices.展开更多
Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of catho...Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of cathodes. Herein, we fabricated amorphous manganese dioxide by an in situ deposition method. The amorphous manganese dioxide can directly serve as the cathode of an aqueous zinc-ion battery without a binder. The resultant cathode exhibits a high specific capacity of 133.9 mAh/g at 200 mA/g and a capacity retention of 82% over 50 cycles at 1 A/g.展开更多
Rechargeable aqueous zinc ion battery(RAZIB)is a promising energy storage system due to its high safety,and high capacity.Among them,manganese oxides with low cost and low toxicity have drawn much attention.However,th...Rechargeable aqueous zinc ion battery(RAZIB)is a promising energy storage system due to its high safety,and high capacity.Among them,manganese oxides with low cost and low toxicity have drawn much attention.However,the under-debate proton reaction mechanism and unsatisfactory electrochemical performance limit their applications.Nanorod b-MnO_(2) synthesized by hydrothermal method is used to investigate the reaction mechanism.As cathode materials for RAZIB,the Zn//b-MnO_(2) delivers 355 mA h g^(-1)(based on cathode mass)at0.1 A g^(-1),and retain 110 mA h g^(-1) after 1000 cycles at 0.2 A g^(-1).Different from conventional zinc ion insertion/extraction mechanism,the proton conversion and Mn ion dissolution/deposition mechanism of b-MnO_(2) is proposed by analyzing the evolution of phase,structure,morphology,and element of b-MnO_(2) electrode,the pH change of electrolyte and the determination of intermediate phase MnO OH.Zinc ion,as a kind of Lewis acid,also provides protons through the formation of ZHS in the proton reaction process.This study of reaction mechanism provides a new perspective for the development of Zn//MnO_(2) battery chemistry.展开更多
Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/LH2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were d...Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/LH2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrographs measurements. Current density has important effects on cell voltage, anodic current efficiency and particle size of the grainy electrolytic manganese dioxide, and the optimum current density is 30 A/dm2. The grainy electrolytic manganese dioxide electrodeposited under the optimum conditions consists of γ-MnO2 with an orthorhombic lattice structure; the grainy electrolytic manganese dioxide has a spherical or sphere-like appearance and a narrow particle size distribution with an average particle diameter of 7.237 μm.展开更多
The effects of temperature and the concentration of sulfuric acid on the cell voltage, the anode current efficiency of electrodeposition and the particle size of grainy electrolytic manganese dioxide (EMD) were inve...The effects of temperature and the concentration of sulfuric acid on the cell voltage, the anode current efficiency of electrodeposition and the particle size of grainy electrolytic manganese dioxide (EMD) were investigated. The structure, particle size and appearance of grainy EMD were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrograph measurements. As the concentration of sulfuric acid increases, both the cell voltage and the average anode current efficiency decrease. With the increase of electrolysis temperature in the range of 30-60℃, the cell voltage, average anode current efficiency and particle size decrease. The optimum temperature of 30℃ and concentration of sulfuric acid of 2.5 mol/L for electrodeposition of the grainy EMD were obtained. XRD patterns show that the grainy EMD electrodeposited under the optimum conditions consists of γ-MnO2 and has an orthorhombic lattice structure. According to the results of SEM, the grainy EMD has a spherical or sphere-like appearance and a narrow particle size distribution with an average size of about 7μm. The grainy EMD is a promising cathode of rechargeable alkaline batteries for high energy density and a prospective precursor for production of the LiMn2O4 cathode of lithium ion batteries.展开更多
为解决MnO_(2)材料在水系锌离子电池(ZIBs)中存在的导电性差、材料利用率低等问题,以农业废弃物椰壳为原料,将低成本、来源丰富、绿色可再生的生物质资源引入到电极材料中,通过高温碳化得到导电性优异的椰壳碳,用水热法在椰壳碳表面生长...为解决MnO_(2)材料在水系锌离子电池(ZIBs)中存在的导电性差、材料利用率低等问题,以农业废弃物椰壳为原料,将低成本、来源丰富、绿色可再生的生物质资源引入到电极材料中,通过高温碳化得到导电性优异的椰壳碳,用水热法在椰壳碳表面生长MnO_(2)纳米粒子,获得椰壳碳@MnO_(2)复合纳米材料。借助扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学技术等表征测试手段,分析该复合材料的形貌结构以及电化学性能。结果表明椰壳碳@MnO_(2)在100 mA g^(-1)的电流密度下,经过300次循环,比容量仍高达到344.6 mA h g^(-1),性能远高于商用MnO_(2)材料(64.3 mA h g^(-1));椰壳碳@MnO_(2)优异的导电性,纳米化的结构设计提高了材料利用率,减少了离子扩散路径,带来更快的离子扩散速率,提高了材料的倍率性能,具有良好的应用前景。展开更多
Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction result...Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.展开更多
This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and l...This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ'mo1-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely con- verted into zincate (Zn(OH)42-) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/rain, pH 〉 13). After the manganese was removed from the solution, the Zn(OH)4^2- was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.展开更多
基金supported by the National Natural Science Foundation of China(22279101,5210130199)the Natural Science Basic Research Plan in Shaanxi Province of China(2022JM-090)+2 种基金China Postdoctoral Science Foundation(2021 M693885)Science and Technology Planning Project of Beilin District(GX2111)and Young Talents Supporting Project of Xi'an Science Association(095920221359).
文摘Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode materials,manganese dioxide with high voltage,environmental protection,and high theoretical specific capacity receives considerable attention.However,the problems of structural instability,manganese dissolution,and poor electrical conductivity make the exploration of high-performance manganese dioxide still a great challenge and impede its practical applications.Besides,zinc storage mechanisms involved are complex and somewhat controversial.To address these issues,tremendous efforts,such as surface engineering,heteroatoms doping,defect engineering,electrolyte modification,and some advanced characterization technologies,have been devoted to improving its electrochemical performance and illustrating zinc storage mechanism.In this review,we particularly focus on the classification of manganese dioxide based on crystal structures,zinc ions storage mechanisms,the existing challenges,and corresponding optimization strategies as well as structure-performance relationship.In the final section,the application perspectives of manganese oxide cathode materials in AZIBs are prospected.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(2014R1A2A1A10050821)
文摘In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a gel formation, using maleic acid(CHO) as the carbon source, followed by annealing at low temperature of 270 °C. A uniform carbon network among the α-MnOnanoparticles was observed by transmission electron microscopy. When tested in a zinc cell, the α-MnO@C exhibited a high initial discharge capacity of 272 m Ah/g under 66 m A/g current density compared to 213 m Ah/g, at the same current density, displayed by the pristine sample. Further, α-MnO@C demonstrated superior cycleability compared to the pristine samples. This study may pave the way for the utilizing carbon-coated MnOelectrodes for aqueous ZIB applications and thereby contribute to realizing high performance eco-friendly batteries.
基金Supported by the National Natural Science Foundation of China(No.20873046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200805740004)+1 种基金the Natural Science Foundation of Guangdong Province,China(No.10351063101000001)the Fund of Guangdong Province Cooperation of Producing, Studying and Researching,China (No.2011B090400317)
文摘The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature. The prepared sample was characterized with X-ray diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller(BET) surface analysis, Fourier transform infrared(FTIR) spectrometry, cyclic voltammetry, alternative current(AC) impedance test and battery discharge test. It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area. The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution, and exhibits larger discharge capacity than EMD, especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.
文摘Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their safety, biodegradability, biocompatibility, environmental benignancy, and low cost. With respect to these advances, a flexible alkaline zinc-manganese dioxide (Zn-MnO2) battery is fabricated with a kelp-based electrolyte in this study. To the best of our knowledge, pure kelp is utilized as a semi-solid electrolyte for flexible Zn-MnO2 alkaline batteries for the first time, with which the as-assembled battery exhibited a specific capacity of 60 mA·h and could discharge for 120 h. Furthermore, the as-assembled Zn-MnO2 battery can be bent into a ring-shape and power a light-emitting diode screen, showing promising potential for the practical application in the future flexible, portable and biodegradable electronic devices.
文摘Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of cathodes. Herein, we fabricated amorphous manganese dioxide by an in situ deposition method. The amorphous manganese dioxide can directly serve as the cathode of an aqueous zinc-ion battery without a binder. The resultant cathode exhibits a high specific capacity of 133.9 mAh/g at 200 mA/g and a capacity retention of 82% over 50 cycles at 1 A/g.
基金the financial supports from International Science&Technology Cooperation Program of China(No.2016YFE0102200)Shenzhen Technical Plan Project(No.JCYJ20160301154114273)+1 种基金National Key Basic Research(973)Program of China(No.2014CB932400)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111)。
文摘Rechargeable aqueous zinc ion battery(RAZIB)is a promising energy storage system due to its high safety,and high capacity.Among them,manganese oxides with low cost and low toxicity have drawn much attention.However,the under-debate proton reaction mechanism and unsatisfactory electrochemical performance limit their applications.Nanorod b-MnO_(2) synthesized by hydrothermal method is used to investigate the reaction mechanism.As cathode materials for RAZIB,the Zn//b-MnO_(2) delivers 355 mA h g^(-1)(based on cathode mass)at0.1 A g^(-1),and retain 110 mA h g^(-1) after 1000 cycles at 0.2 A g^(-1).Different from conventional zinc ion insertion/extraction mechanism,the proton conversion and Mn ion dissolution/deposition mechanism of b-MnO_(2) is proposed by analyzing the evolution of phase,structure,morphology,and element of b-MnO_(2) electrode,the pH change of electrolyte and the determination of intermediate phase MnO OH.Zinc ion,as a kind of Lewis acid,also provides protons through the formation of ZHS in the proton reaction process.This study of reaction mechanism provides a new perspective for the development of Zn//MnO_(2) battery chemistry.
文摘Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/LH2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrographs measurements. Current density has important effects on cell voltage, anodic current efficiency and particle size of the grainy electrolytic manganese dioxide, and the optimum current density is 30 A/dm2. The grainy electrolytic manganese dioxide electrodeposited under the optimum conditions consists of γ-MnO2 with an orthorhombic lattice structure; the grainy electrolytic manganese dioxide has a spherical or sphere-like appearance and a narrow particle size distribution with an average particle diameter of 7.237 μm.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50302016) and the PostdoctoralScience Foundation of Central South University.
文摘The effects of temperature and the concentration of sulfuric acid on the cell voltage, the anode current efficiency of electrodeposition and the particle size of grainy electrolytic manganese dioxide (EMD) were investigated. The structure, particle size and appearance of grainy EMD were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrograph measurements. As the concentration of sulfuric acid increases, both the cell voltage and the average anode current efficiency decrease. With the increase of electrolysis temperature in the range of 30-60℃, the cell voltage, average anode current efficiency and particle size decrease. The optimum temperature of 30℃ and concentration of sulfuric acid of 2.5 mol/L for electrodeposition of the grainy EMD were obtained. XRD patterns show that the grainy EMD electrodeposited under the optimum conditions consists of γ-MnO2 and has an orthorhombic lattice structure. According to the results of SEM, the grainy EMD has a spherical or sphere-like appearance and a narrow particle size distribution with an average size of about 7μm. The grainy EMD is a promising cathode of rechargeable alkaline batteries for high energy density and a prospective precursor for production of the LiMn2O4 cathode of lithium ion batteries.
文摘为解决MnO_(2)材料在水系锌离子电池(ZIBs)中存在的导电性差、材料利用率低等问题,以农业废弃物椰壳为原料,将低成本、来源丰富、绿色可再生的生物质资源引入到电极材料中,通过高温碳化得到导电性优异的椰壳碳,用水热法在椰壳碳表面生长MnO_(2)纳米粒子,获得椰壳碳@MnO_(2)复合纳米材料。借助扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电化学技术等表征测试手段,分析该复合材料的形貌结构以及电化学性能。结果表明椰壳碳@MnO_(2)在100 mA g^(-1)的电流密度下,经过300次循环,比容量仍高达到344.6 mA h g^(-1),性能远高于商用MnO_(2)材料(64.3 mA h g^(-1));椰壳碳@MnO_(2)优异的导电性,纳米化的结构设计提高了材料利用率,减少了离子扩散路径,带来更快的离子扩散速率,提高了材料的倍率性能,具有良好的应用前景。
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFB0104302)the National Natural Science Foundation of China(Grant No.51872026)。
文摘Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.
基金Scientific and Technological Research Council of Turkey for financial support
文摘This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ'mo1-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely con- verted into zincate (Zn(OH)42-) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/rain, pH 〉 13). After the manganese was removed from the solution, the Zn(OH)4^2- was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.