This paper examines reflexivization and reciprocality in Kalabari with particular attention to the forms,functions and structures of reflexive and reciprocal constructions(the nominal sub-type)in the language.The pape...This paper examines reflexivization and reciprocality in Kalabari with particular attention to the forms,functions and structures of reflexive and reciprocal constructions(the nominal sub-type)in the language.The paper adopts the binding theory as a framework in analysing the data.The data were gathered through interaction and introspection.The findings reveal that reflexives and reciprocals in Kalabari require a compatible clause-mate antecedent due to the strong anaphoric relationship between reflexive and reciprocal markers and their antecedents respectively.The findings further reveal that the form of Kalabari reflexives consists of-ḇù(-self)and the appropriate form of the pronoun in the language.The paper also reveals that the Kalabari language makes a tripartite distinction for number,person and gender,and the form of the reflexive does not change;only the pronoun changes,while reciprocals consist of a reduplicated form jụmọjụmọ,jápụjápụand jéin jéin.In terms of the structure,findings reveal that reflexives and reciprocals come before the verb of the clause in which they occur.The finding further reveals that reflexives in the language perform both non-emphatic and emphatic functions,while reciprocal relates to human and non-human reference of mutuality.Tonal inflection also makes a distinction in 1st person singular and 2nd person singular reflexives.It is therefore recommended that more studies be done to ascertain the form,function and structure of the verbal and possessive sub-type of reflexive and reciprocal constructions in the language.展开更多
Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating ...Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating nonlinear systems, based on the Sagnac effect. Here, we propose an all-optical approach to achieve nonreciprocal photon blockade in an on-chip microring resonator coupled to a V-type Rb atom, which arises from the Zeeman splittings of the atomic hyperfine sublevels induced by the fictitious magnetic field of a circularly polarized control laser. The system manifests single-photon blockade or multi-photon tunneling when driven from opposite directions. This nonreciprocity results from the directional detunings between the countercirculating probe fields and the V-type atom, which does not require the mechanical rotation and facilitates integration. Our work opens up a new route to achieve on-chip integrable quantum nonreciprocity, enabling applications in chiral quantum technologies.展开更多
Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid d...Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.展开更多
This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differe...This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.展开更多
Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether perf...Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether performing morcellation as a two-stage procedure improves tissue retrieval efficiency,and seek to determine the optimal interval between the two surgeries.Methods:This study included nine cases of holmium laser enucleation of the prostate with an enucleated prostate weight exceeding 200 g,indicative of substantial prostate enlargement.Morcellation was performed on Day 0(n=4),Day 4(n=1),Day 6(n=1),and Day 7(n=3).The intervals were compared regarding the morcellation efficiency,beach ball presence,and pathology.Results:The mean estimated prostate volume was 383(range 330e528)mL;the median enucleation weight was 252(interquartile range[IQR]222,342)g;and the median enucleation time was 83(IQR 62,100)min.The mean morcellation efficiency was 1.44(SD 0.55)g/min on Day 0 and 13.69(SD 2.46)g/min on day 7.The morcellation efficiency was 4.15 g/min and 10.50 g/min on Day 4 and Day 6,respectively,with significantly higher in the two-stage group compared to one-stage group(11.0 g/min vs.1.5 g/min;p=0.014).Efficiency was strongly correlated with intervals(p<0.001);the incidences of beach balls were 100%(4/4)and 60%(3/5)in the immediate and two-stage surgery groups,respectively.Conclusion:The efficiency of two-stage morcellation with reciprocating morcellators was highly related to the postoperative interval,with the maximum efficiency reached on Day 7.展开更多
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device...Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.展开更多
Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I ...Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I in terms of various structuralparameters of the graph G,including vertex-connectivity,independence number and pendant vertices.展开更多
We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists betw...We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.展开更多
Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×1...Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.展开更多
In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60μm were obtained by a melt s...In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60μm were obtained by a melt spinning single-roller device, and the flakes were then processed into rods by reciprocating extrusion and direct extrusion. The microstructure of the alloy was analyzed by optical microscope and SEM, and the constituent phases were identified by XRD. Phase transformation and its onset temperature were determined by differential thermal analyzer (DTA). The analysis result shows that rapid solidification for Mg-6.4Zn-I.IY alloy can inhibit the eutectic reactions, broaden the solid solubility of Zn in α-Mg solute solution, and impede the formation of Mg3 Y2Zn3 and MgZn2 compounds, and thus help the icosahedral Mg3 YZn6 quasicrystal formed directly from the melt. The microstructure of the flakes consists of the α-Mg solid solution and icosahedral Mg3 YZn6 quasicrystal. Dense rods can be made from the flakes by two-pass reciprocating extrusion and direct extrusion. The interfaces between flakes in the rods can be welded and jointed perfectly. During the reciprocating extrusion and direct extrusion process, more Mg3 YZn6 compounds are precipitated and distributed uniformly, whereas the rods possess fine microstructures inherited from rapidly solidified flakes. The rods contain only two phases: α- magnesium solid solution as matrix and fine icosahedral Mg3 YZn6 quasicrystal which disperses uniformly in the matrix.展开更多
The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the val...The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10/8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system.展开更多
M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat t...M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat treatment. The effect of RE processing on the morphology and size of M92Si and the mechanical properties of the com- posite were investigated, to develop new ways to refine the M928i phase and improve its shape. The result showed that RE was very useful in refining the M92Si phase. The more the RE processing passes, the better the refining effect would be. Moreover, the uniform distribution of M928i phases would be more in the composite. After the composite was processed by RE for 12 passes, most M92Si phases were equiaxed, with granular diameter below 20 μm, and distributed uniformly in the matrix of the composite. The mechanical properties of the composite could be increased prominently by RE processing, and were much higher than that in the as-cast state. As the temperature rises, the tensile strength is reduced. For the composite RE processed for 12 passes, the tensile strength, yield strength, and elongation are 325.9 MPa, 211.4 MPa, and 3.3% at room temperature, whereas, 288.2 MPa, ,207.7 MPa, and 7.8%, respectively, at 150℃. In comparison with the properties at room temperature, the tensile strength and yield strength are high and only decrease by 11.6% and 1.8% at 150℃. The M928i reinforced Mg-Al based composite possesses good heat resistance at 150℃. The excellent resistance to effect of heat is attributed to the high melting tempera- ture and good thermal stability of fine Mg2Si phases, which are distributed uniformly in the composite, and effectively hinder the grain boundary gliding and dislocation movement.展开更多
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On...Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.展开更多
文摘This paper examines reflexivization and reciprocality in Kalabari with particular attention to the forms,functions and structures of reflexive and reciprocal constructions(the nominal sub-type)in the language.The paper adopts the binding theory as a framework in analysing the data.The data were gathered through interaction and introspection.The findings reveal that reflexives and reciprocals in Kalabari require a compatible clause-mate antecedent due to the strong anaphoric relationship between reflexive and reciprocal markers and their antecedents respectively.The findings further reveal that the form of Kalabari reflexives consists of-ḇù(-self)and the appropriate form of the pronoun in the language.The paper also reveals that the Kalabari language makes a tripartite distinction for number,person and gender,and the form of the reflexive does not change;only the pronoun changes,while reciprocals consist of a reduplicated form jụmọjụmọ,jápụjápụand jéin jéin.In terms of the structure,findings reveal that reflexives and reciprocals come before the verb of the clause in which they occur.The finding further reveals that reflexives in the language perform both non-emphatic and emphatic functions,while reciprocal relates to human and non-human reference of mutuality.Tonal inflection also makes a distinction in 1st person singular and 2nd person singular reflexives.It is therefore recommended that more studies be done to ascertain the form,function and structure of the verbal and possessive sub-type of reflexive and reciprocal constructions in the language.
基金supported by the National Natural Science Foundation of China (Grant Nos.12305020 and 92365107)the National Key R&D Program of China (Grant No.2019YFA0308700)+2 种基金the Program for Innovative Talents and Teams in Jiangsu (Grant No.JSSCTD202138)China Postdoctoral Science Foundation (Grant No.2023M731613)Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No.2023ZB708)。
文摘Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating nonlinear systems, based on the Sagnac effect. Here, we propose an all-optical approach to achieve nonreciprocal photon blockade in an on-chip microring resonator coupled to a V-type Rb atom, which arises from the Zeeman splittings of the atomic hyperfine sublevels induced by the fictitious magnetic field of a circularly polarized control laser. The system manifests single-photon blockade or multi-photon tunneling when driven from opposite directions. This nonreciprocity results from the directional detunings between the countercirculating probe fields and the V-type atom, which does not require the mechanical rotation and facilitates integration. Our work opens up a new route to achieve on-chip integrable quantum nonreciprocity, enabling applications in chiral quantum technologies.
基金supported by the National Natural Science Foundation of China(Grant Nos.62288101 and 62274086)the National Key R&D Program of China(Grant No.2021YFA0718802)the Jiangsu Outstanding Postdoctoral Program。
文摘Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.
基金funded by the National Natural Science Foundation of China(Grant No.12404507)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.24KJB140013)the Scientific Startup Foundation of Nanjing Normal University(Grant No.184080H201B49).
文摘This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.
文摘Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether performing morcellation as a two-stage procedure improves tissue retrieval efficiency,and seek to determine the optimal interval between the two surgeries.Methods:This study included nine cases of holmium laser enucleation of the prostate with an enucleated prostate weight exceeding 200 g,indicative of substantial prostate enlargement.Morcellation was performed on Day 0(n=4),Day 4(n=1),Day 6(n=1),and Day 7(n=3).The intervals were compared regarding the morcellation efficiency,beach ball presence,and pathology.Results:The mean estimated prostate volume was 383(range 330e528)mL;the median enucleation weight was 252(interquartile range[IQR]222,342)g;and the median enucleation time was 83(IQR 62,100)min.The mean morcellation efficiency was 1.44(SD 0.55)g/min on Day 0 and 13.69(SD 2.46)g/min on day 7.The morcellation efficiency was 4.15 g/min and 10.50 g/min on Day 4 and Day 6,respectively,with significantly higher in the two-stage group compared to one-stage group(11.0 g/min vs.1.5 g/min;p=0.014).Efficiency was strongly correlated with intervals(p<0.001);the incidences of beach balls were 100%(4/4)and 60%(3/5)in the immediate and two-stage surgery groups,respectively.Conclusion:The efficiency of two-stage morcellation with reciprocating morcellators was highly related to the postoperative interval,with the maximum efficiency reached on Day 7.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1C1C1008831).This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS-2023-00244330).S J P was supported by Basic Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025526).
文摘Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Graph problems of topological parameters based on the spectra of graph matrices”(2021D01C069)the National Natural Science Foundation of the People's Republic of China“The investigation of spectral properties of graph operations and their related problems”(12161085)。
文摘Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I in terms of various structuralparameters of the graph G,including vertex-connectivity,independence number and pendant vertices.
文摘We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.
基金Project (50271054) supported by National Natural Science Foundation of ChinaProject (20070700003) supported by Ph.D. Programs Foundation of Ministry of Education of China+1 种基金Project (102102210031) supported by Science and Technologies Foundation of Henan,ChinaProject (2010A430008) supported by Natural Science Foundation of Henan Educational Committee,China
文摘Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.
基金funded by the National Natural Science Foundation of China(Grant No.50271054)the Shaanxi Provincial Nature Scientific Research Project(Grant No.2003E1 11)SRF for ROCS,SEM(101-220325).
文摘In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60μm were obtained by a melt spinning single-roller device, and the flakes were then processed into rods by reciprocating extrusion and direct extrusion. The microstructure of the alloy was analyzed by optical microscope and SEM, and the constituent phases were identified by XRD. Phase transformation and its onset temperature were determined by differential thermal analyzer (DTA). The analysis result shows that rapid solidification for Mg-6.4Zn-I.IY alloy can inhibit the eutectic reactions, broaden the solid solubility of Zn in α-Mg solute solution, and impede the formation of Mg3 Y2Zn3 and MgZn2 compounds, and thus help the icosahedral Mg3 YZn6 quasicrystal formed directly from the melt. The microstructure of the flakes consists of the α-Mg solid solution and icosahedral Mg3 YZn6 quasicrystal. Dense rods can be made from the flakes by two-pass reciprocating extrusion and direct extrusion. The interfaces between flakes in the rods can be welded and jointed perfectly. During the reciprocating extrusion and direct extrusion process, more Mg3 YZn6 compounds are precipitated and distributed uniformly, whereas the rods possess fine microstructures inherited from rapidly solidified flakes. The rods contain only two phases: α- magnesium solid solution as matrix and fine icosahedral Mg3 YZn6 quasicrystal which disperses uniformly in the matrix.
基金supported by China National Key Technology R&D Program(Grant No. 2008BAF34B13)China Postdoctoral Science Foundation Funded Project(Grant No. 2011M501363)
文摘The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10/8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system.
基金This study was financially supported by the Scientific Research Project of Education Department of Shaanxi Province (No. 07JK358);the National Natural Science Foundation of China (No.50271054); the Shaanxi Provincial Natural Scientific Research Project (No.2003E111); SRF for ROCS, SEM (101-220325).
文摘M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat treatment. The effect of RE processing on the morphology and size of M92Si and the mechanical properties of the com- posite were investigated, to develop new ways to refine the M928i phase and improve its shape. The result showed that RE was very useful in refining the M92Si phase. The more the RE processing passes, the better the refining effect would be. Moreover, the uniform distribution of M928i phases would be more in the composite. After the composite was processed by RE for 12 passes, most M92Si phases were equiaxed, with granular diameter below 20 μm, and distributed uniformly in the matrix of the composite. The mechanical properties of the composite could be increased prominently by RE processing, and were much higher than that in the as-cast state. As the temperature rises, the tensile strength is reduced. For the composite RE processed for 12 passes, the tensile strength, yield strength, and elongation are 325.9 MPa, 211.4 MPa, and 3.3% at room temperature, whereas, 288.2 MPa, ,207.7 MPa, and 7.8%, respectively, at 150℃. In comparison with the properties at room temperature, the tensile strength and yield strength are high and only decrease by 11.6% and 1.8% at 150℃. The M928i reinforced Mg-Al based composite possesses good heat resistance at 150℃. The excellent resistance to effect of heat is attributed to the high melting tempera- ture and good thermal stability of fine Mg2Si phases, which are distributed uniformly in the composite, and effectively hinder the grain boundary gliding and dislocation movement.
基金supported by National Basic Research Program of China(973 Program,Grant No. 2009CB724304)Key Research Program of the State Key Laboratory of Tribology of Tsinghua University,China (Grant No. SKLT08A06)National Natural Science Foundation of China(Grant No. 50975157)
文摘Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.