Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×1...Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism...Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.展开更多
BACKGROUND Meniscus extrusion occurs in most elderly individuals and most patients after meniscus allograft transplantation.The risk factors and correlative factors of meniscus extrusion have been extensively studied....BACKGROUND Meniscus extrusion occurs in most elderly individuals and most patients after meniscus allograft transplantation.The risk factors and correlative factors of meniscus extrusion have been extensively studied.However,for using tendon autograft for meniscus reconstruction,both graft type and surgical method are different from those in previous studies on meniscus extrusion.AIM To identify predictive factors for coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.METHODS Ten patients who underwent medial meniscus reconstruction with tendon autograft were selected for this retrospective observational study.The graft extrusions and potential factors were measured and correlation and regression analyses were performed to analyze their relationships.RESULTS The medial graft extrusion correlated with the preoperative bilateral hip-kneeankle angle difference,preoperative Kellgren-Lawrence grade,preoperative relative joint space width,and preoperative bilateral medial edge incline angle difference.The anterior graft correlated with the anterior tunnel edge distance at 1 week after operation.The posterior graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference,preoperative relative joint space width,and posterior tunnel edge distance at 1 week after operation.The mean graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference and preoperative relative joint space width.The preoperative joint space width and anterior and posterior tunnel edge distance at 1 week can be used to predict the medial,anterior,posterior,and mean graft extrusion length.CONCLUSION The preoperative joint space width and tunnel position can be used to predict the coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.展开更多
Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shapi...Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing.展开更多
Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether perf...Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether performing morcellation as a two-stage procedure improves tissue retrieval efficiency,and seek to determine the optimal interval between the two surgeries.Methods:This study included nine cases of holmium laser enucleation of the prostate with an enucleated prostate weight exceeding 200 g,indicative of substantial prostate enlargement.Morcellation was performed on Day 0(n=4),Day 4(n=1),Day 6(n=1),and Day 7(n=3).The intervals were compared regarding the morcellation efficiency,beach ball presence,and pathology.Results:The mean estimated prostate volume was 383(range 330e528)mL;the median enucleation weight was 252(interquartile range[IQR]222,342)g;and the median enucleation time was 83(IQR 62,100)min.The mean morcellation efficiency was 1.44(SD 0.55)g/min on Day 0 and 13.69(SD 2.46)g/min on day 7.The morcellation efficiency was 4.15 g/min and 10.50 g/min on Day 4 and Day 6,respectively,with significantly higher in the two-stage group compared to one-stage group(11.0 g/min vs.1.5 g/min;p=0.014).Efficiency was strongly correlated with intervals(p<0.001);the incidences of beach balls were 100%(4/4)and 60%(3/5)in the immediate and two-stage surgery groups,respectively.Conclusion:The efficiency of two-stage morcellation with reciprocating morcellators was highly related to the postoperative interval,with the maximum efficiency reached on Day 7.展开更多
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device...Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.展开更多
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat t...M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat treatment. The effect of RE processing on the morphology and size of M92Si and the mechanical properties of the com- posite were investigated, to develop new ways to refine the M928i phase and improve its shape. The result showed that RE was very useful in refining the M92Si phase. The more the RE processing passes, the better the refining effect would be. Moreover, the uniform distribution of M928i phases would be more in the composite. After the composite was processed by RE for 12 passes, most M92Si phases were equiaxed, with granular diameter below 20 μm, and distributed uniformly in the matrix of the composite. The mechanical properties of the composite could be increased prominently by RE processing, and were much higher than that in the as-cast state. As the temperature rises, the tensile strength is reduced. For the composite RE processed for 12 passes, the tensile strength, yield strength, and elongation are 325.9 MPa, 211.4 MPa, and 3.3% at room temperature, whereas, 288.2 MPa, ,207.7 MPa, and 7.8%, respectively, at 150℃. In comparison with the properties at room temperature, the tensile strength and yield strength are high and only decrease by 11.6% and 1.8% at 150℃. The M928i reinforced Mg-Al based composite possesses good heat resistance at 150℃. The excellent resistance to effect of heat is attributed to the high melting tempera- ture and good thermal stability of fine Mg2Si phases, which are distributed uniformly in the composite, and effectively hinder the grain boundary gliding and dislocation movement.展开更多
In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60μm were obtained by a melt s...In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60μm were obtained by a melt spinning single-roller device, and the flakes were then processed into rods by reciprocating extrusion and direct extrusion. The microstructure of the alloy was analyzed by optical microscope and SEM, and the constituent phases were identified by XRD. Phase transformation and its onset temperature were determined by differential thermal analyzer (DTA). The analysis result shows that rapid solidification for Mg-6.4Zn-I.IY alloy can inhibit the eutectic reactions, broaden the solid solubility of Zn in α-Mg solute solution, and impede the formation of Mg3 Y2Zn3 and MgZn2 compounds, and thus help the icosahedral Mg3 YZn6 quasicrystal formed directly from the melt. The microstructure of the flakes consists of the α-Mg solid solution and icosahedral Mg3 YZn6 quasicrystal. Dense rods can be made from the flakes by two-pass reciprocating extrusion and direct extrusion. The interfaces between flakes in the rods can be welded and jointed perfectly. During the reciprocating extrusion and direct extrusion process, more Mg3 YZn6 compounds are precipitated and distributed uniformly, whereas the rods possess fine microstructures inherited from rapidly solidified flakes. The rods contain only two phases: α- magnesium solid solution as matrix and fine icosahedral Mg3 YZn6 quasicrystal which disperses uniformly in the matrix.展开更多
An equal channel reciprocating extrusion(ECRE)was proposed first to obtain a severe plastic deformation(SPD)of 7005 alloy.The microstructure and mechanical properties of one-pass ECREed(ECRE processed)7005 alloy were ...An equal channel reciprocating extrusion(ECRE)was proposed first to obtain a severe plastic deformation(SPD)of 7005 alloy.The microstructure and mechanical properties of one-pass ECREed(ECRE processed)7005 alloy were investigated.The results show that SPD occurring in ECRE leads to a mixed microstructure.ECREed 7005 alloy exhibits a significant improvement of ultimate tensile strength(UTS)and elongation.Mechanical properties in the region undergoing a complete ECRE process are higher than those in the region undergoing an incomplete ECRE process due to larger dislocation strengthening effect.Yield strength(YS)and UTS first decrease and then increase with an increase of extrusion temperature.The YS of 359.2 MPa,UTS of 490 MPa and elongation of 17.7%are obtained after T6 treatment.Fine-grain strengthening,dislocation strengthening and precipitation strengthening in the T6-treated ECREed sample all play important roles in improving the mechanical properties.展开更多
A reciprocating extrusion (RE) process was used to improve the mechanical properties of Al-based composite manufactured using cast and powder metallurgy (PM). AA 6063 cast and AA 6061 powders were used as the matr...A reciprocating extrusion (RE) process was used to improve the mechanical properties of Al-based composite manufactured using cast and powder metallurgy (PM). AA 6063 cast and AA 6061 powders were used as the matrix materials, and the matrix was reinforced by 5% SiC (volume fraction) particles. The hardness and grain size of extruded samples decrease with increasing the number of extrusion pass, while the toughness and ductility increase. As the tensile strength of the samples decreases, the elongation of the extruded samples increases. Consequently, reciprocating extrusion is an effective method for improving the mechanical properties of metal matrix composites (MMC).展开更多
Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on ...Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.展开更多
High strength, ductility, and superplasticity Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%) alloy was prepared by sequentially applying rapid solidification, extrusion, and reciprocating extrusion(REX). The microstructure of...High strength, ductility, and superplasticity Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%) alloy was prepared by sequentially applying rapid solidification, extrusion, and reciprocating extrusion(REX). The microstructure of the alloy after 2-pass REX consisted of fine grains smaller than 0.7 μm and nanometer strengthening particles. The refined grains resulted from recrystallization during which the nanometer particles played an important role in restrain grain growth. The mechanical properties of the material were investigated at room and elevated temperatures. High tensile yield strength of 336 MPa and elongation of 27% were obtained at room temperature. At elevated temperatures, the highest elongation of 270% was obtained at 250 ℃ and an initial strain rate of 3.3×10^-3 s^-1, and LTS and HSRS were achieved. The high strength, ductility, and superplasticity were attributed to the refined unique microstructure.展开更多
Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial...Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial AZ31 alloy in extrudability,but also have superior mechanical properties,especially in terms of yield strength(YS).The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys.The high strength-ductility mainly comes from the formation of fine grains,nano-spaced submicron/nano precipitates,and weak texture.Moreover,it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C,significantly higher than that of AZ31 alloy(YS:45 MPa).The Zn/Ca solute segregation at grain boundaries,the improved heat resistance of matrix due to addition of RE,and the high melting points of strengthening particles(Mn,MgZn_(2),and Mg-Zn-RE/Mg-Zn-RE-Ca)are mainly responsible for the excellent high-temperature strength.展开更多
Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical proper...Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical properties of the AXM1104 alloy was systematically studied. With the increasing of extrusion rate, the mean dynamically recrystallized(DRXed) grain size of the low alloy and average particles diameter of precipitate second phases were increased, while the degree of grain boundary segregation and the intensity of the basal fiber texture were decreased. With the rising of extrusion rate from 1.0 to 7.0 mm/s, the tensile yield strength(TYS) of the as-extruded AXM1104 alloy was decreased from 445 MPa to 249 MPa, while the elongation to failure(EL) was increased from 5.0% to 17.6%. The TYS, ultimate tensile strength(UTS) and EL of the AXM1104 alloy extruded at the ram speed of 1.5 mm/s was 412 MPa, 419 MPa and 12.0%, respectively,exhibiting comprehensive tensile mechanical properties with ultra-high strength and excellent plasticity. The ultra-high TYS of 412 MPa was mainly due to the strengthening from ultra-fine DRXed grains with segregation of solute atoms at grain boundaries. The strain hardening rate is increase slightly with increasing extrusion speed, which may be ascribed to the increasing mean DRXed grain size with rising extrusion speed. The higher strain hardening rate contributes to the higher EL of these AXM1104 samples extruded at higher ram speed.展开更多
The effects of extrusion temperature on the microstructure and tensile properties of extruded AZ61 and AZ91 alloys are investigated by subjecting them to hot extrusion at 300 and 400℃.Although the average grain size ...The effects of extrusion temperature on the microstructure and tensile properties of extruded AZ61 and AZ91 alloys are investigated by subjecting them to hot extrusion at 300 and 400℃.Although the average grain size of the extruded AZ61 alloy slightly increases from 9.5 to 12.6μm with increasing extrusion temperature,its resultant microstructural variation is insignificant.In contrast,the average grain size of the extruded AZ91 alloy significantly increases from 5.7 to 22.5μm with increasing extrusion temperature,and the type of Mg17Al12 precipitates formed in it changes from fine dynamic precipitates with a spherical shape to coarse static precipitates with a lamellar structure.As the extrusion temperature increases,the tensile yield strength of the extruded AZ61 alloy increases from 183 to 197 MPa while that of the extruded AZ91 alloy decreases from 232 to 224 MPa.The tensile elongations of the extruded AZ61 and AZ91 alloys decrease with increasing extrusion temperature,but the degree of decrease is significant in the latter alloy.These different extrusion temperature dependences of the tensile properties of the extruded AZ61 and AZ91 alloys are discussed in terms of their microstructural characteristics,strengthening mechanisms,and crack initiation sites.展开更多
Accumulative alternating back extrusion was a potential fine-grain modification method.In this paper,it was an innovative attempt to develop high-performance magnesium alloy sheet by this process.Under the condition o...Accumulative alternating back extrusion was a potential fine-grain modification method.In this paper,it was an innovative attempt to develop high-performance magnesium alloy sheet by this process.Under the condition of 350 K,commercial AZ31 magnesium alloy was made into billet by accumulative alternating back extrusion,and then extruded into fine-grain magnesium alloy sheet.Through a systematic study of its microstructure and mechanical properties,the results showed that the initial state had an important influence on the evolution of the structure during extrusion.After accumulative alternating back extrusion to produce the billet,the grain size of the sheet obtained by extrusion was significantly refined,which was related to the accumulation of deformation and grain refinement during the alternating loading process.Grain refinement caused the proportion of dynamic recrystallization inside the sheet with 2 cycles of accumulative alternating back extrusion to drop to 27%.With the increase of extrusion cycles from 2 to 4,the high density of dislocations led to an increase in the proportion of dynamic recrystallization and finer grains.The texture changed from strong basal texture to weak bimodal texture.The results of uniaxial tensile test show that due to grain refinement and texture change,the yield strength was significantly reduced,and the plasticity was significantly improved.It was verified that accumulative alternating back extrusion was meaningful for subsequent processing,and it also provided scientific guidance for the development of fine-grained magnesium alloy sheet.展开更多
This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mecha...This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mechanical properties of materials extruded at 350 and 450℃.An increase in the extrusion temperature causes a decrease in the amount of strain energy accumulated in the material during extrusion,because of promoted activation of pyramidal<c+a>slip and dynamic recovery.This reduced strain energy weakens the DRX behavior during extrusion,which eventually results in a decrease in the area fraction of recrystallized grains of the extruded material.The material extruded at 450℃has coarser grains and a stronger basal fiber texture than that extruded at 350℃.As the extrusion temperature increases from 350 to 450℃,the tensile yield strength(TYS)of the extruded material increases from 191.8 to 201.5 MPa,whereas its compressive yield strength(CYS)decreases from 122.5 to 111.0 MPa;consequently,its tension-compression yield stress ratio(CYS/TYS)decreases from 0.64 to 0.55.The increase in the TYS is attributed mainly to the stronger texture hardening and strain hardening effects of the extruded material,and the decrease in the CYS is attributed to the reduced twinning stress resulting from grain coarsening and texture intensification.The microstructural and textural evolutions of the materials during extrusion and the deformation and hardening mechanisms of the extruded materials are discussed in detail.展开更多
基金Project (50271054) supported by National Natural Science Foundation of ChinaProject (20070700003) supported by Ph.D. Programs Foundation of Ministry of Education of China+1 种基金Project (102102210031) supported by Science and Technologies Foundation of Henan,ChinaProject (2010A430008) supported by Natural Science Foundation of Henan Educational Committee,China
文摘Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金National Natural Science Foundation of China(U22B20131)State Key Laboratory of Explosion Science and Technology(QNKT23-10)for supporting this project.
文摘Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.
文摘BACKGROUND Meniscus extrusion occurs in most elderly individuals and most patients after meniscus allograft transplantation.The risk factors and correlative factors of meniscus extrusion have been extensively studied.However,for using tendon autograft for meniscus reconstruction,both graft type and surgical method are different from those in previous studies on meniscus extrusion.AIM To identify predictive factors for coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.METHODS Ten patients who underwent medial meniscus reconstruction with tendon autograft were selected for this retrospective observational study.The graft extrusions and potential factors were measured and correlation and regression analyses were performed to analyze their relationships.RESULTS The medial graft extrusion correlated with the preoperative bilateral hip-kneeankle angle difference,preoperative Kellgren-Lawrence grade,preoperative relative joint space width,and preoperative bilateral medial edge incline angle difference.The anterior graft correlated with the anterior tunnel edge distance at 1 week after operation.The posterior graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference,preoperative relative joint space width,and posterior tunnel edge distance at 1 week after operation.The mean graft extrusion correlated with the preoperative bilateral hip-knee-ankle angle difference and preoperative relative joint space width.The preoperative joint space width and anterior and posterior tunnel edge distance at 1 week can be used to predict the medial,anterior,posterior,and mean graft extrusion length.CONCLUSION The preoperative joint space width and tunnel position can be used to predict the coronal and sagittal graft extrusion length after using tendon autograft for medial meniscus reconstruction.
基金supported by the Hunan Provincial Natural Science Foundation of China (Grant no.2023JJ30632)National Key R&D Program (Grant no.2022YFC2204403)Key R&D Program of Hunan Province (Grant no.2022GK2027)。
文摘Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing.
文摘Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether performing morcellation as a two-stage procedure improves tissue retrieval efficiency,and seek to determine the optimal interval between the two surgeries.Methods:This study included nine cases of holmium laser enucleation of the prostate with an enucleated prostate weight exceeding 200 g,indicative of substantial prostate enlargement.Morcellation was performed on Day 0(n=4),Day 4(n=1),Day 6(n=1),and Day 7(n=3).The intervals were compared regarding the morcellation efficiency,beach ball presence,and pathology.Results:The mean estimated prostate volume was 383(range 330e528)mL;the median enucleation weight was 252(interquartile range[IQR]222,342)g;and the median enucleation time was 83(IQR 62,100)min.The mean morcellation efficiency was 1.44(SD 0.55)g/min on Day 0 and 13.69(SD 2.46)g/min on day 7.The morcellation efficiency was 4.15 g/min and 10.50 g/min on Day 4 and Day 6,respectively,with significantly higher in the two-stage group compared to one-stage group(11.0 g/min vs.1.5 g/min;p=0.014).Efficiency was strongly correlated with intervals(p<0.001);the incidences of beach balls were 100%(4/4)and 60%(3/5)in the immediate and two-stage surgery groups,respectively.Conclusion:The efficiency of two-stage morcellation with reciprocating morcellators was highly related to the postoperative interval,with the maximum efficiency reached on Day 7.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1C1C1008831).This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS-2023-00244330).S J P was supported by Basic Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025526).
文摘Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
基金This study was financially supported by the Scientific Research Project of Education Department of Shaanxi Province (No. 07JK358);the National Natural Science Foundation of China (No.50271054); the Shaanxi Provincial Natural Scientific Research Project (No.2003E111); SRF for ROCS, SEM (101-220325).
文摘M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat treatment. The effect of RE processing on the morphology and size of M92Si and the mechanical properties of the com- posite were investigated, to develop new ways to refine the M928i phase and improve its shape. The result showed that RE was very useful in refining the M92Si phase. The more the RE processing passes, the better the refining effect would be. Moreover, the uniform distribution of M928i phases would be more in the composite. After the composite was processed by RE for 12 passes, most M92Si phases were equiaxed, with granular diameter below 20 μm, and distributed uniformly in the matrix of the composite. The mechanical properties of the composite could be increased prominently by RE processing, and were much higher than that in the as-cast state. As the temperature rises, the tensile strength is reduced. For the composite RE processed for 12 passes, the tensile strength, yield strength, and elongation are 325.9 MPa, 211.4 MPa, and 3.3% at room temperature, whereas, 288.2 MPa, ,207.7 MPa, and 7.8%, respectively, at 150℃. In comparison with the properties at room temperature, the tensile strength and yield strength are high and only decrease by 11.6% and 1.8% at 150℃. The M928i reinforced Mg-Al based composite possesses good heat resistance at 150℃. The excellent resistance to effect of heat is attributed to the high melting tempera- ture and good thermal stability of fine Mg2Si phases, which are distributed uniformly in the composite, and effectively hinder the grain boundary gliding and dislocation movement.
基金funded by the National Natural Science Foundation of China(Grant No.50271054)the Shaanxi Provincial Nature Scientific Research Project(Grant No.2003E1 11)SRF for ROCS,SEM(101-220325).
文摘In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1 Y magnesium alloy with a thickness of 50-60μm were obtained by a melt spinning single-roller device, and the flakes were then processed into rods by reciprocating extrusion and direct extrusion. The microstructure of the alloy was analyzed by optical microscope and SEM, and the constituent phases were identified by XRD. Phase transformation and its onset temperature were determined by differential thermal analyzer (DTA). The analysis result shows that rapid solidification for Mg-6.4Zn-I.IY alloy can inhibit the eutectic reactions, broaden the solid solubility of Zn in α-Mg solute solution, and impede the formation of Mg3 Y2Zn3 and MgZn2 compounds, and thus help the icosahedral Mg3 YZn6 quasicrystal formed directly from the melt. The microstructure of the flakes consists of the α-Mg solid solution and icosahedral Mg3 YZn6 quasicrystal. Dense rods can be made from the flakes by two-pass reciprocating extrusion and direct extrusion. The interfaces between flakes in the rods can be welded and jointed perfectly. During the reciprocating extrusion and direct extrusion process, more Mg3 YZn6 compounds are precipitated and distributed uniformly, whereas the rods possess fine microstructures inherited from rapidly solidified flakes. The rods contain only two phases: α- magnesium solid solution as matrix and fine icosahedral Mg3 YZn6 quasicrystal which disperses uniformly in the matrix.
基金This work is supported by the National Natural Science Foundation of China(51875124).
文摘An equal channel reciprocating extrusion(ECRE)was proposed first to obtain a severe plastic deformation(SPD)of 7005 alloy.The microstructure and mechanical properties of one-pass ECREed(ECRE processed)7005 alloy were investigated.The results show that SPD occurring in ECRE leads to a mixed microstructure.ECREed 7005 alloy exhibits a significant improvement of ultimate tensile strength(UTS)and elongation.Mechanical properties in the region undergoing a complete ECRE process are higher than those in the region undergoing an incomplete ECRE process due to larger dislocation strengthening effect.Yield strength(YS)and UTS first decrease and then increase with an increase of extrusion temperature.The YS of 359.2 MPa,UTS of 490 MPa and elongation of 17.7%are obtained after T6 treatment.Fine-grain strengthening,dislocation strengthening and precipitation strengthening in the T6-treated ECREed sample all play important roles in improving the mechanical properties.
基金the Scientific and Technological Research Council of Turkey(TUB?TAK)and Erciyes University for their financial support of the present study under project Nos.108M562 and FBD-09668,respectively
文摘A reciprocating extrusion (RE) process was used to improve the mechanical properties of Al-based composite manufactured using cast and powder metallurgy (PM). AA 6063 cast and AA 6061 powders were used as the matrix materials, and the matrix was reinforced by 5% SiC (volume fraction) particles. The hardness and grain size of extruded samples decrease with increasing the number of extrusion pass, while the toughness and ductility increase. As the tensile strength of the samples decreases, the elongation of the extruded samples increases. Consequently, reciprocating extrusion is an effective method for improving the mechanical properties of metal matrix composites (MMC).
基金financially supported by the Natural Science Foundation of Shanxi Province (No. 201901D111176)the Joint Funds of the National Natural Science Foundation of china (Grant No. U20A20230)+3 种基金the Bureau of science, technology and industry for National Defense of China (No. WDZC2019JJ006)the Key R&D program of Shanxi Province (International Cooperation) (No. 201903D421036)the National Natural Science Foundation of China (Grant No. 52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2018002)。
文摘Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.
基金Funded by the National Natural Foundation of China(No.51571086)China Postdoctoral Science Foundation(No.2013M541973)The Research Fund for Doctoral Program of Henan Polytechnic University(No.B2015-14)
文摘High strength, ductility, and superplasticity Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr(wt%) alloy was prepared by sequentially applying rapid solidification, extrusion, and reciprocating extrusion(REX). The microstructure of the alloy after 2-pass REX consisted of fine grains smaller than 0.7 μm and nanometer strengthening particles. The refined grains resulted from recrystallization during which the nanometer particles played an important role in restrain grain growth. The mechanical properties of the material were investigated at room and elevated temperatures. High tensile yield strength of 336 MPa and elongation of 27% were obtained at room temperature. At elevated temperatures, the highest elongation of 270% was obtained at 250 ℃ and an initial strain rate of 3.3×10^-3 s^-1, and LTS and HSRS were achieved. The high strength, ductility, and superplasticity were attributed to the refined unique microstructure.
基金supported by the National Natural Science Foundation of China(Nos.52071093 and 51871069)the Key Laboratory of Micro-Systems and Micro-Structures Manufacturing(HIT)+2 种基金Ministry of Education(No.2020 KM009)the Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(No.3072022GIP1004)the Science and Technology Innovation Major Project of Ningbo City,China(No.2019B10103).
文摘Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial AZ31 alloy in extrudability,but also have superior mechanical properties,especially in terms of yield strength(YS).The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys.The high strength-ductility mainly comes from the formation of fine grains,nano-spaced submicron/nano precipitates,and weak texture.Moreover,it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C,significantly higher than that of AZ31 alloy(YS:45 MPa).The Zn/Ca solute segregation at grain boundaries,the improved heat resistance of matrix due to addition of RE,and the high melting points of strengthening particles(Mn,MgZn_(2),and Mg-Zn-RE/Mg-Zn-RE-Ca)are mainly responsible for the excellent high-temperature strength.
基金supported by National Natural Science Foundation of China (No. 51971076 and No. 51771062)。
文摘Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical properties of the AXM1104 alloy was systematically studied. With the increasing of extrusion rate, the mean dynamically recrystallized(DRXed) grain size of the low alloy and average particles diameter of precipitate second phases were increased, while the degree of grain boundary segregation and the intensity of the basal fiber texture were decreased. With the rising of extrusion rate from 1.0 to 7.0 mm/s, the tensile yield strength(TYS) of the as-extruded AXM1104 alloy was decreased from 445 MPa to 249 MPa, while the elongation to failure(EL) was increased from 5.0% to 17.6%. The TYS, ultimate tensile strength(UTS) and EL of the AXM1104 alloy extruded at the ram speed of 1.5 mm/s was 412 MPa, 419 MPa and 12.0%, respectively,exhibiting comprehensive tensile mechanical properties with ultra-high strength and excellent plasticity. The ultra-high TYS of 412 MPa was mainly due to the strengthening from ultra-fine DRXed grains with segregation of solute atoms at grain boundaries. The strain hardening rate is increase slightly with increasing extrusion speed, which may be ascribed to the increasing mean DRXed grain size with rising extrusion speed. The higher strain hardening rate contributes to the higher EL of these AXM1104 samples extruded at higher ram speed.
基金This research was supported by the National Research Foundation of Korea(NRF)grant(No.2019R1A2C1085272)funded by the Ministry of Science,ICT,and Future Planning(MSIP,South Korea).
文摘The effects of extrusion temperature on the microstructure and tensile properties of extruded AZ61 and AZ91 alloys are investigated by subjecting them to hot extrusion at 300 and 400℃.Although the average grain size of the extruded AZ61 alloy slightly increases from 9.5 to 12.6μm with increasing extrusion temperature,its resultant microstructural variation is insignificant.In contrast,the average grain size of the extruded AZ91 alloy significantly increases from 5.7 to 22.5μm with increasing extrusion temperature,and the type of Mg17Al12 precipitates formed in it changes from fine dynamic precipitates with a spherical shape to coarse static precipitates with a lamellar structure.As the extrusion temperature increases,the tensile yield strength of the extruded AZ61 alloy increases from 183 to 197 MPa while that of the extruded AZ91 alloy decreases from 232 to 224 MPa.The tensile elongations of the extruded AZ61 and AZ91 alloys decrease with increasing extrusion temperature,but the degree of decrease is significant in the latter alloy.These different extrusion temperature dependences of the tensile properties of the extruded AZ61 and AZ91 alloys are discussed in terms of their microstructural characteristics,strengthening mechanisms,and crack initiation sites.
基金This project is supported by National Natural Science Foundation of China(No.51975166)。
文摘Accumulative alternating back extrusion was a potential fine-grain modification method.In this paper,it was an innovative attempt to develop high-performance magnesium alloy sheet by this process.Under the condition of 350 K,commercial AZ31 magnesium alloy was made into billet by accumulative alternating back extrusion,and then extruded into fine-grain magnesium alloy sheet.Through a systematic study of its microstructure and mechanical properties,the results showed that the initial state had an important influence on the evolution of the structure during extrusion.After accumulative alternating back extrusion to produce the billet,the grain size of the sheet obtained by extrusion was significantly refined,which was related to the accumulation of deformation and grain refinement during the alternating loading process.Grain refinement caused the proportion of dynamic recrystallization inside the sheet with 2 cycles of accumulative alternating back extrusion to drop to 27%.With the increase of extrusion cycles from 2 to 4,the high density of dislocations led to an increase in the proportion of dynamic recrystallization and finer grains.The texture changed from strong basal texture to weak bimodal texture.The results of uniaxial tensile test show that due to grain refinement and texture change,the yield strength was significantly reduced,and the plasticity was significantly improved.It was verified that accumulative alternating back extrusion was meaningful for subsequent processing,and it also provided scientific guidance for the development of fine-grained magnesium alloy sheet.
基金supported by the National Research Foundation of Korea(NRF)grant(No.2019R1A2C1085272)funded by the Ministry of Science,ICT and Future Planning(MSIP,South Korea).
文摘This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mechanical properties of materials extruded at 350 and 450℃.An increase in the extrusion temperature causes a decrease in the amount of strain energy accumulated in the material during extrusion,because of promoted activation of pyramidal<c+a>slip and dynamic recovery.This reduced strain energy weakens the DRX behavior during extrusion,which eventually results in a decrease in the area fraction of recrystallized grains of the extruded material.The material extruded at 450℃has coarser grains and a stronger basal fiber texture than that extruded at 350℃.As the extrusion temperature increases from 350 to 450℃,the tensile yield strength(TYS)of the extruded material increases from 191.8 to 201.5 MPa,whereas its compressive yield strength(CYS)decreases from 122.5 to 111.0 MPa;consequently,its tension-compression yield stress ratio(CYS/TYS)decreases from 0.64 to 0.55.The increase in the TYS is attributed mainly to the stronger texture hardening and strain hardening effects of the extruded material,and the decrease in the CYS is attributed to the reduced twinning stress resulting from grain coarsening and texture intensification.The microstructural and textural evolutions of the materials during extrusion and the deformation and hardening mechanisms of the extruded materials are discussed in detail.