Objective To observe the immune responses elicited in BALB/c mice by a DNA vaccine. A gene encoding rhoptry protein 1 (ROP1) from Toxoplasma gondii (T. gondii) was cloned into vector pcDNA3. Methods Amplifyied gene ...Objective To observe the immune responses elicited in BALB/c mice by a DNA vaccine. A gene encoding rhoptry protein 1 (ROP1) from Toxoplasma gondii (T. gondii) was cloned into vector pcDNA3. Methods Amplifyied gene fragments coding for ROP1 from the genomic DNA of T.gondii ZS2 were inserted into cloning vector, pUC18, and sub-cloned into pcDNA3. Mice were injected at a dosage of 100?μg recombinant plasmid DNA by intramuscular injection and boosted after 2 weeks. pcDNA3 and normal saline were used as control. 30, 50 and 70 days after the second immunization, NK cell activity, T lymphocyte proliferation and sub-clusters and serum IgG antibody were assayed.Results The specific gene fragment coding for ROP1 was amplified and a pcROP1 recombinant was constructed. At 30 days after immunization, the spleens of the mice were obviously enlarged evidently. NKC activity and the proliferation of spleen T lymphocytes seen on MTT assay were higher in pcROP1 group than in the controls. The number of CD4+ T cells exhibited no obvious increase compared with that of the control, but CD8+ T cells were obviously increased (P<0.05). At 90 days after vaccination, the titer of IgG antibody in the serum of vaccinated mice was positive (1∶100). Conclusion pcROP1 was constructed and it could elicit both cellular and humoral immune responses in immunized mice.展开更多
Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and ...Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and engineer complex artificial metabolic systems. DNA manipulation on a large genome-wide scale is an inevitable challenge, but a necessary tool for synthetic biology. To improve the methods used for the synthesis of long DNA fragments, here we constructed a novel shuttle vector named p GF(plasmid Genome Fast) for DNA assembly in vivo. The BAC plasmid p CC1 BAC, which can accommodate large DNA molecules, was chosen as the backbone. The sequence of the yeast artificial chromosome(YAC) regulatory element CEN6-ARS4 was synthesized and inserted into the plasmid to enable it to replicate in yeast. The selection sequence HIS3, obtained by polymerase chain reaction(PCR) from the plasmid p BS313, was inserted for screening. This new synthetic shuttle vector can mediate the transformation-associated recombination(TAR) assembly of large DNA fragments in yeast, and the assembled products can be transformed into Escherichia coli for further amplification. We also conducted in vivo DNA assembly using p GF and yeast homologous recombination and constructed a 31-kb long DNA sequence from the cyanophage PP genome. Our findings show that this novel shuttle vector would be a useful tool for efficient genome-scale DNA reconstruction.展开更多
文摘Objective To observe the immune responses elicited in BALB/c mice by a DNA vaccine. A gene encoding rhoptry protein 1 (ROP1) from Toxoplasma gondii (T. gondii) was cloned into vector pcDNA3. Methods Amplifyied gene fragments coding for ROP1 from the genomic DNA of T.gondii ZS2 were inserted into cloning vector, pUC18, and sub-cloned into pcDNA3. Mice were injected at a dosage of 100?μg recombinant plasmid DNA by intramuscular injection and boosted after 2 weeks. pcDNA3 and normal saline were used as control. 30, 50 and 70 days after the second immunization, NK cell activity, T lymphocyte proliferation and sub-clusters and serum IgG antibody were assayed.Results The specific gene fragment coding for ROP1 was amplified and a pcROP1 recombinant was constructed. At 30 days after immunization, the spleens of the mice were obviously enlarged evidently. NKC activity and the proliferation of spleen T lymphocytes seen on MTT assay were higher in pcROP1 group than in the controls. The number of CD4+ T cells exhibited no obvious increase compared with that of the control, but CD8+ T cells were obviously increased (P<0.05). At 90 days after vaccination, the titer of IgG antibody in the serum of vaccinated mice was positive (1∶100). Conclusion pcROP1 was constructed and it could elicit both cellular and humoral immune responses in immunized mice.
基金supported by the 973 program,Grant No.2012CB721102
文摘Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and engineer complex artificial metabolic systems. DNA manipulation on a large genome-wide scale is an inevitable challenge, but a necessary tool for synthetic biology. To improve the methods used for the synthesis of long DNA fragments, here we constructed a novel shuttle vector named p GF(plasmid Genome Fast) for DNA assembly in vivo. The BAC plasmid p CC1 BAC, which can accommodate large DNA molecules, was chosen as the backbone. The sequence of the yeast artificial chromosome(YAC) regulatory element CEN6-ARS4 was synthesized and inserted into the plasmid to enable it to replicate in yeast. The selection sequence HIS3, obtained by polymerase chain reaction(PCR) from the plasmid p BS313, was inserted for screening. This new synthetic shuttle vector can mediate the transformation-associated recombination(TAR) assembly of large DNA fragments in yeast, and the assembled products can be transformed into Escherichia coli for further amplification. We also conducted in vivo DNA assembly using p GF and yeast homologous recombination and constructed a 31-kb long DNA sequence from the cyanophage PP genome. Our findings show that this novel shuttle vector would be a useful tool for efficient genome-scale DNA reconstruction.