The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption were investigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found th...The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption were investigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found that two reconstructed structures, i.e. c(2×2)-O and (√2×2√2)R45°-O are coexistent. The domain size of the c(2×2)-O structure decreased with the increasing of O2 exposure. The reconstructed structure at very small coverage was also investigated and a “zigzag” structure was observed at this stage. The “zigzag” structure was identified as boundaries of local c(2×2) domains. It was found that the strip region shows much stronger molecule-substrate interaction than that of oxygen covered regions, making it a proper template for patterned organic films. The sequence of the thermal stability was found as zigzag structure〉c(2×2)〉(√2×2√2)R45°-O.展开更多
Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ...Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.展开更多
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr...Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.展开更多
This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model ...This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively. The cut model still maintains its correct topology structure. With these operations, tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.展开更多
Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that ...Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that cause structural damage to the ocular surface.OSR encompasses both medical and surgical treatment options.In this review,we discuss the medical and surgical strategies used in OSR.Medical management often aims to treat tear insufficiency,inflammation,and keratinization.Surgical treatments may be employed for a variety of reasons,including failure of medical management.This may include improving the oculo-palpebral structures in order to improve lid positioning and tear film.Additional therapies focus on improving tear production,such as through salivary gland transplantation.In situations where the ocular surface is so severely damaged that there is loss of limbal stem cells,limbal stem cell transplant(LSCT)may be indicated.Other surgeries such as amniotic membrane transplant(AMT)and conjunctival flaps(CFs)can help promote corneal healing.Finally,in severe situations where the cornea is beyond salvage,corneal transplantation,such as a penetrating keratoplasty(PKP),can be considered.OSR often requires a combination of medical and surgical approaches targeted to each specific patient’s presentation in order to achieve optimal outcomes.展开更多
A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman'...A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.展开更多
Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate ...Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate all errors caused by perspective distortion and lens distortion.Also,the image-matching algorithm of the binocular vision system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces.In this paper,a preset coordinate system was utilized for camera calibration instead of Zhang’calibration.The binocular vision system was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal arc welding.Combining and improving the algorithms of speeded up robust features,binary robust invariant scalable keypoints,and KAZE,the feature information of points(i.e.,RGB values,pixel coordinates)was extracted as the feature vector of the welding pool surface.Based on the characteristics of the welding images,a mismatch-elimination algorithm was developed to increase the accuracy of image-matching algorithms.The world coordinates of matching feature points were calculated to reconstruct the 3D shape of the welding pool surface.The effectiveness and accuracy of the reconstruction of welding pool surfaces were verified by experimental results.This research proposes the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize intelligent welding control systems in the future.展开更多
Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching...Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching strategy to tailor the electronic structure of NiMoO_(4),where the prepared NiMoO_(4) nanorods etched by H_(2)O_(2) reconstruct their surface with abundant cation deficiencies and lattice distortion.Calculation results reveal that the double cation deficiencies can make the upshift of d-band center for Ni atoms and the active sites with better oxygen adsorption capacity.As a result,the optimized sample(NMO-30M)possesses an overpotential of 260 mV at 10 mA cm−2 and excellent long-term durability of 162 h.Importantly,in situ Raman test reveals the rapid formation of high-oxidation-state transition metal hydroxide species,which can further help to improve the catalytic activity of NiMoO_(4) in OER.This work highlights the influence of surface remodification and shed some light on activating catalysts.展开更多
In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calcula...In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.展开更多
The fatigue performance of a workpiece depends on its surface quality.In traditional fatigue life prediction,the effect of surface quality is commonly accounted for by using empirical correction factors,which is impre...The fatigue performance of a workpiece depends on its surface quality.In traditional fatigue life prediction,the effect of surface quality is commonly accounted for by using empirical correction factors,which is imprecise when safety is of great concern.For surface quality,the surface topography is an important parameter,which introduces stress concentration that reduces the fatigue life.It is not feasible to test the stress concentration of different surface topographies.On the one hand,it is time-consuming and high-cost,and on the other hand,it cannot reflect the general statistical characteristics.With the help of surface reconstruction technology and interpolation method,a more efficient and economic approach is proposed,where FE simulation of workpiece with the reconstructed surface topography is used as a foundation for fatigue life prediction.The relationship between surface roughness(Sa)and fatigue life of the workpiece is studied with the proposed approach.展开更多
Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electro...Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electronic board and begin to create actual presentationof real-world objects. VBA is not only a very powerful tool of development, but with very simplesyntax. Associating with those solids, objects and commands of AutoCAD 2000, VBA notably simplifiesprevious complex algorithms, graphical presentations and processing, etc. Meanwhile, it can avoidappearance of complex data structure and data format in reverse design with other modeling software.Applying VBA to reverse engineering can greatly improve modeling efficiency and facilitate surfacereconstruction.展开更多
Rationally manipulating the in‐situ formed catalytically active surface of catalysts remains a great challenge for a highly efficient water electrolysis.Here,we report a cationic oxidation method which can adjust the...Rationally manipulating the in‐situ formed catalytically active surface of catalysts remains a great challenge for a highly efficient water electrolysis.Here,we report a cationic oxidation method which can adjust the leaching of the in‐situ catalyst and promote the reconstruction of dynamic surface for the oxygen evolution reaction(OER).The chlorine doping can reduce the possibility of triggering in‐situ cobalt oxidation and chlorine leaching,leading to a transformation of the surface chlorine doped LaCoO_(3)(Cl‐LaCoO_(3))into an intricate amorphous(oxygen)hydroxide phase.And thus,Cl‐LaCoO_(3)nanocrystals shows an ultralow overpotential of 342 mV at the current density of 10 mA cm^(–2)and Tafel slope of 76.2 mV dec–1.Surface reconstructed Cl‐LaCoO_(3)is better than many of the most advanced OER catalysts and has proven significant stability.This work provides a new prospect for designing a high‐efficiency electrocatalyst with optimized perovskite‐structure in renewable energy system.展开更多
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by inte...Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.展开更多
A region-growing method for reconstructing triangulated surfaces from massive unorganized points is presented. To save memory space, a ring data structure is adopted to build connections between points and triangulate...A region-growing method for reconstructing triangulated surfaces from massive unorganized points is presented. To save memory space, a ring data structure is adopted to build connections between points and triangulated surfaces. The data-structure allows the efficient retrieval of all neighboring vertices and triangles of a given vertice, To narrow the search range of adjacent points and avoid tuangle intersection, an influence area is defined for each active-edge, In the region-growing process of triangulated surfaces, a minimum-edge-angle-product algorithm is put forward to select an appropriate point to form a new triangle for an active edge. Results indicate that the presented method has high efficiency and needs less memory space, optimized triangulated surfaces with reliable topological quality can be obtained after triangulation,展开更多
Controlling catalytic activities through surface strain engineering remains a hot topic in electrocatalysis studies.Herein,ab initio molecular dynamics(AIMD)simulation associated with free energy sampling technology w...Controlling catalytic activities through surface strain engineering remains a hot topic in electrocatalysis studies.Herein,ab initio molecular dynamics(AIMD)simulation associated with free energy sampling technology were performed to study the energetics of the key step of producing C2 products in electrocatalytic reduction of CO or CO_(2),i.e.CO dimerization,on strained Cu(100)with an explicit aqueous solvent model.It is worth mentioning that when compressive strain reaches a certain extent,the surface of Cu(100)will undergo reconstruction.We showed that,from tensile to compressive strain,the free energy barrier of CO dimerization decreased,suggesting that the activity of CO dimerization increases.It was also found that some of the reconstructed surfaces showing the lowest free energy barriers but might be less stable can be stabilized in the presence of adsorbed O or CO.Upon detailed quantitative analysis on the charges of surface Cu atoms,we found that the free energy barriers were strongly correlated with the charge of Cu atoms where the OCCO intermediate adsorbs.When the surfaces structures of Cu(100)were altered under compressive strain,the electronic structure of surface Cu atoms was monitored and thus the activity of electrocatalytic CO dimerization can be tuned.展开更多
A novel reconstruction method from contours lines is provided. First, we use a simple method to get rid of redundant points on every contour, then we interpolate them by using cubic Bézier spline curve. For corre...A novel reconstruction method from contours lines is provided. First, we use a simple method to get rid of redundant points on every contour, then we interpolate them by using cubic Bézier spline curve. For corresponding points of different con- tours, we interpolate them by the cubic Bézier spline curve too, so the whole surface can be reconstructed by the bi-cubic Bézier spline surface. The reconstructed surface is smooth because every Bézier surface is patched with G2 continuity, the reconstruction speed is fast because we can use the forward elimination and backward substitution method to solve the system of tridiagonal equations. We give some reconstruction examples at the end of this paper. Experiments showed that our method is applicable and effective.展开更多
We use Radial Basis Functions (RBFs) to reconstruct smooth surfaces from 3D scattered data. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. We propose improveme...We use Radial Basis Functions (RBFs) to reconstruct smooth surfaces from 3D scattered data. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. We propose improvements on the methods of surface reconstruction with radial basis functions. A sparse approximation set of scattered data is constructed by reducing the number of interpolating points on the surface. We present an adaptive method for finding the off-surface normal points. The order of the equation decreases greatly as the number of the off-surface constraints reduces gradually. Experimental results are provided to illustrate that the proposed method is robust and may draw beautiful graphics.展开更多
A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction ma...A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction mainly depends on the decoding of gray code views and phase-shift views.In order to find the boundary accurately,gray code patterns and their inverses are projected onto a human eye plaster model.The period dislocation between the gray code views and the phase-shift views in the course of decoding has been analyzed and a new method has been proposed to solve it.The splicing method is based on feature points.The result of the 3D surface reconstruction shows the accuracy and reliability of our method.展开更多
In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our me...In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.展开更多
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.60506019).
文摘The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption were investigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found that two reconstructed structures, i.e. c(2×2)-O and (√2×2√2)R45°-O are coexistent. The domain size of the c(2×2)-O structure decreased with the increasing of O2 exposure. The reconstructed structure at very small coverage was also investigated and a “zigzag” structure was observed at this stage. The “zigzag” structure was identified as boundaries of local c(2×2) domains. It was found that the strip region shows much stronger molecule-substrate interaction than that of oxygen covered regions, making it a proper template for patterned organic films. The sequence of the thermal stability was found as zigzag structure〉c(2×2)〉(√2×2√2)R45°-O.
基金supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(22209047,U21A2081,22075074)+2 种基金Natural Science Foundation of Hunan Province(2020JJ5035)Hunan Provincial Department of Education Outstanding Youth Project(23B0037)Macao Science and Technology Development Fund(Macao SAR,FDCT-0096/2020/A2).
文摘Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.
基金supported by the financial support of the Guangxi Science and Technology Major Projects(Guike AA23023033)。
文摘Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.
基金This research was supported by the National Nature Science Foundation of China under Grant No.60473024 the Nature Science Foundation of Zhejiang Province of China under Grant No.Y104341 and z105391.
文摘This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively. The cut model still maintains its correct topology structure. With these operations, tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.
文摘Ocular surface disease(OSD)can have a severe impact on patients as it can lead to visual impairment and persistent discomfort.Ocular surface reconstruction(OSR)is an approach to the management of ocular diseases that cause structural damage to the ocular surface.OSR encompasses both medical and surgical treatment options.In this review,we discuss the medical and surgical strategies used in OSR.Medical management often aims to treat tear insufficiency,inflammation,and keratinization.Surgical treatments may be employed for a variety of reasons,including failure of medical management.This may include improving the oculo-palpebral structures in order to improve lid positioning and tear film.Additional therapies focus on improving tear production,such as through salivary gland transplantation.In situations where the ocular surface is so severely damaged that there is loss of limbal stem cells,limbal stem cell transplant(LSCT)may be indicated.Other surgeries such as amniotic membrane transplant(AMT)and conjunctival flaps(CFs)can help promote corneal healing.Finally,in severe situations where the cornea is beyond salvage,corneal transplantation,such as a penetrating keratoplasty(PKP),can be considered.OSR often requires a combination of medical and surgical approaches targeted to each specific patient’s presentation in order to achieve optimal outcomes.
文摘A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.
基金Supported by National Natural Science Foundation of China(Grant No.51775313)Major Program of Shandong Province Natural Science Foundation(Grant No.ZR2018ZC1760)Young Scholars Program of Shandong University(Grant No.2017WLJH24).
文摘Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate all errors caused by perspective distortion and lens distortion.Also,the image-matching algorithm of the binocular vision system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces.In this paper,a preset coordinate system was utilized for camera calibration instead of Zhang’calibration.The binocular vision system was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal arc welding.Combining and improving the algorithms of speeded up robust features,binary robust invariant scalable keypoints,and KAZE,the feature information of points(i.e.,RGB values,pixel coordinates)was extracted as the feature vector of the welding pool surface.Based on the characteristics of the welding images,a mismatch-elimination algorithm was developed to increase the accuracy of image-matching algorithms.The world coordinates of matching feature points were calculated to reconstruct the 3D shape of the welding pool surface.The effectiveness and accuracy of the reconstruction of welding pool surfaces were verified by experimental results.This research proposes the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize intelligent welding control systems in the future.
基金supported by the National Natural Science Foundation of China(No.12004146)Natural Science Foundation of Gansu Province,China(Nos.20JR5RA303 and 20JR10RA648)the Fundamental Research Funds for the Central Universities(No.LZUMMM2022007).
文摘Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching strategy to tailor the electronic structure of NiMoO_(4),where the prepared NiMoO_(4) nanorods etched by H_(2)O_(2) reconstruct their surface with abundant cation deficiencies and lattice distortion.Calculation results reveal that the double cation deficiencies can make the upshift of d-band center for Ni atoms and the active sites with better oxygen adsorption capacity.As a result,the optimized sample(NMO-30M)possesses an overpotential of 260 mV at 10 mA cm−2 and excellent long-term durability of 162 h.Importantly,in situ Raman test reveals the rapid formation of high-oxidation-state transition metal hydroxide species,which can further help to improve the catalytic activity of NiMoO_(4) in OER.This work highlights the influence of surface remodification and shed some light on activating catalysts.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20603032, No.20733004, No.21121003, No.91021004, No.20933006), the National Key Basic Research Program (No.2011CB921400), the Foundation of National Excellent Doctoral Dissertation of China (No.200736), the Fundamental Research Funds for the Central Universities (No.WK2340000006 and No.WK2060140005), and the Shanghai Supercompurer Center, the USTC-HP HPC Project, and the SCCAS.
文摘In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘The fatigue performance of a workpiece depends on its surface quality.In traditional fatigue life prediction,the effect of surface quality is commonly accounted for by using empirical correction factors,which is imprecise when safety is of great concern.For surface quality,the surface topography is an important parameter,which introduces stress concentration that reduces the fatigue life.It is not feasible to test the stress concentration of different surface topographies.On the one hand,it is time-consuming and high-cost,and on the other hand,it cannot reflect the general statistical characteristics.With the help of surface reconstruction technology and interpolation method,a more efficient and economic approach is proposed,where FE simulation of workpiece with the reconstructed surface topography is used as a foundation for fatigue life prediction.The relationship between surface roughness(Sa)and fatigue life of the workpiece is studied with the proposed approach.
文摘Taking AutoCAD2000 as platform, an algorithm for the reconstruction ofsurface from scattered data points based on VBA is presented. With this core technology customerscan be free from traditional AutoCAD as an electronic board and begin to create actual presentationof real-world objects. VBA is not only a very powerful tool of development, but with very simplesyntax. Associating with those solids, objects and commands of AutoCAD 2000, VBA notably simplifiesprevious complex algorithms, graphical presentations and processing, etc. Meanwhile, it can avoidappearance of complex data structure and data format in reverse design with other modeling software.Applying VBA to reverse engineering can greatly improve modeling efficiency and facilitate surfacereconstruction.
文摘Rationally manipulating the in‐situ formed catalytically active surface of catalysts remains a great challenge for a highly efficient water electrolysis.Here,we report a cationic oxidation method which can adjust the leaching of the in‐situ catalyst and promote the reconstruction of dynamic surface for the oxygen evolution reaction(OER).The chlorine doping can reduce the possibility of triggering in‐situ cobalt oxidation and chlorine leaching,leading to a transformation of the surface chlorine doped LaCoO_(3)(Cl‐LaCoO_(3))into an intricate amorphous(oxygen)hydroxide phase.And thus,Cl‐LaCoO_(3)nanocrystals shows an ultralow overpotential of 342 mV at the current density of 10 mA cm^(–2)and Tafel slope of 76.2 mV dec–1.Surface reconstructed Cl‐LaCoO_(3)is better than many of the most advanced OER catalysts and has proven significant stability.This work provides a new prospect for designing a high‐efficiency electrocatalyst with optimized perovskite‐structure in renewable energy system.
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金supported by the National Natural Science Foundation of China(22209012,52072036)the fellowship of China Postdoctoral Science Foundation(2020M680374)。
文摘Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.
文摘A region-growing method for reconstructing triangulated surfaces from massive unorganized points is presented. To save memory space, a ring data structure is adopted to build connections between points and triangulated surfaces. The data-structure allows the efficient retrieval of all neighboring vertices and triangles of a given vertice, To narrow the search range of adjacent points and avoid tuangle intersection, an influence area is defined for each active-edge, In the region-growing process of triangulated surfaces, a minimum-edge-angle-product algorithm is put forward to select an appropriate point to form a new triangle for an active edge. Results indicate that the presented method has high efficiency and needs less memory space, optimized triangulated surfaces with reliable topological quality can be obtained after triangulation,
文摘Controlling catalytic activities through surface strain engineering remains a hot topic in electrocatalysis studies.Herein,ab initio molecular dynamics(AIMD)simulation associated with free energy sampling technology were performed to study the energetics of the key step of producing C2 products in electrocatalytic reduction of CO or CO_(2),i.e.CO dimerization,on strained Cu(100)with an explicit aqueous solvent model.It is worth mentioning that when compressive strain reaches a certain extent,the surface of Cu(100)will undergo reconstruction.We showed that,from tensile to compressive strain,the free energy barrier of CO dimerization decreased,suggesting that the activity of CO dimerization increases.It was also found that some of the reconstructed surfaces showing the lowest free energy barriers but might be less stable can be stabilized in the presence of adsorbed O or CO.Upon detailed quantitative analysis on the charges of surface Cu atoms,we found that the free energy barriers were strongly correlated with the charge of Cu atoms where the OCCO intermediate adsorbs.When the surfaces structures of Cu(100)were altered under compressive strain,the electronic structure of surface Cu atoms was monitored and thus the activity of electrocatalytic CO dimerization can be tuned.
基金Project supported by the National Natural Science Foundation of China (Nos. 60373070 and 60573147), Postdoctor Foundation of Shanghai (No. 05R214129), and Zhejiang Education Foundation of China (No. 20050786)
文摘A novel reconstruction method from contours lines is provided. First, we use a simple method to get rid of redundant points on every contour, then we interpolate them by using cubic Bézier spline curve. For corresponding points of different con- tours, we interpolate them by the cubic Bézier spline curve too, so the whole surface can be reconstructed by the bi-cubic Bézier spline surface. The reconstructed surface is smooth because every Bézier surface is patched with G2 continuity, the reconstruction speed is fast because we can use the forward elimination and backward substitution method to solve the system of tridiagonal equations. We give some reconstruction examples at the end of this paper. Experiments showed that our method is applicable and effective.
文摘We use Radial Basis Functions (RBFs) to reconstruct smooth surfaces from 3D scattered data. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. We propose improvements on the methods of surface reconstruction with radial basis functions. A sparse approximation set of scattered data is constructed by reducing the number of interpolating points on the surface. We present an adaptive method for finding the off-surface normal points. The order of the equation decreases greatly as the number of the off-surface constraints reduces gradually. Experimental results are provided to illustrate that the proposed method is robust and may draw beautiful graphics.
文摘A 3D surface reconstruction method using a binocular stereo vision technology and a coded structured light,which combines a gray code with phase-shift has been studied.The accuracy of the 3 D surface reconstruction mainly depends on the decoding of gray code views and phase-shift views.In order to find the boundary accurately,gray code patterns and their inverses are projected onto a human eye plaster model.The period dislocation between the gray code views and the phase-shift views in the course of decoding has been analyzed and a new method has been proposed to solve it.The splicing method is based on feature points.The result of the 3D surface reconstruction shows the accuracy and reliability of our method.
基金Supported by the Natural Science Foundation of Hebei Province
文摘In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.